Penalized projection estimator for volatility density

被引:9
|
作者
Comte, F. [1 ]
Genon-Catalot, V. [1 ]
机构
[1] Univ Paris 05, CNRS, MAP5, UMR 8145, F-75270 Paris 06, France
关键词
adaptive estimation; density deconvolution; diffusion processes; penalized projection estimator; stochastic volatility;
D O I
10.1111/j.1467-9469.2006.00519.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider a stochastic volatility model (Y-t, V-t), where the volatility (V-t) is a positive stationary Markov process. We assume that (InVt) admits a stationary density f that we want to estimate. Only the price process Y-t is observed at n discrete times with regular sampling interval Delta. We propose a non-parametric estimator for f obtained by a penalized projection method. Under mixing assumptions on (V-y), we derive bounds for the quadratic risk of the estimator. Assuming that Delta = Delta(n) tends to 0 while the number of observations and the length of the observation time tend to infinity, we discuss the rate of convergence of the risk. Examples of models included in this framework are given.
引用
收藏
页码:875 / 893
页数:19
相关论文
共 50 条
  • [21] Penalized least distance estimator in the multivariate regression model
    Shin, Jungmin
    Kang, Jongkyeong
    Bang, Sungwan
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2024, 37 (01) : 1 - 12
  • [22] Tuning parameter selection for a penalized estimator of species richness
    Paynter, Alex
    Willis, Amy D.
    [J]. JOURNAL OF APPLIED STATISTICS, 2021, 48 (06) : 1053 - 1070
  • [23] Edgeworth corrections for spot volatility estimator
    He, Lidan
    Liu, Qiang
    Liu, Zhi
    [J]. STATISTICS & PROBABILITY LETTERS, 2020, 164
  • [24] Semiparametric stochastic volatility modelling using penalized splines
    Langrock, Roland
    Michelot, Theo
    Sohn, Alexander
    Kneib, Thomas
    [J]. COMPUTATIONAL STATISTICS, 2015, 30 (02) : 517 - 537
  • [25] Semiparametric stochastic volatility modelling using penalized splines
    Roland Langrock
    Théo Michelot
    Alexander Sohn
    Thomas Kneib
    [J]. Computational Statistics, 2015, 30 : 517 - 537
  • [26] Penalized semiparametric density estimation
    Yang, Ying
    [J]. STATISTICS AND COMPUTING, 2009, 19 (04) : 355 - 366
  • [27] Penalized semiparametric density estimation
    Ying Yang
    [J]. Statistics and Computing, 2009, 19
  • [28] A Nondegenerate Penalized Likelihood Estimator for Variance Parameters in Multilevel Models
    Chung, Yeojin
    Rabe-Hesketh, Sophia
    Dorie, Vincent
    Gelman, Andrew
    Liu, Jingchen
    [J]. PSYCHOMETRIKA, 2013, 78 (04) : 685 - 709
  • [29] SEGMENTATION OF THE POISSON AND NEGATIVE BINOMIAL RATE MODELS: A PENALIZED ESTIMATOR
    Cleynen, Alice
    Lebarbier, Emilie
    [J]. ESAIM-PROBABILITY AND STATISTICS, 2014, 18 : 750 - 769
  • [30] A Nondegenerate Penalized Likelihood Estimator for Variance Parameters in Multilevel Models
    Yeojin Chung
    Sophia Rabe-Hesketh
    Vincent Dorie
    Andrew Gelman
    Jingchen Liu
    [J]. Psychometrika, 2013, 78 : 685 - 709