Penalized projection estimator for volatility density

被引:9
|
作者
Comte, F. [1 ]
Genon-Catalot, V. [1 ]
机构
[1] Univ Paris 05, CNRS, MAP5, UMR 8145, F-75270 Paris 06, France
关键词
adaptive estimation; density deconvolution; diffusion processes; penalized projection estimator; stochastic volatility;
D O I
10.1111/j.1467-9469.2006.00519.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider a stochastic volatility model (Y-t, V-t), where the volatility (V-t) is a positive stationary Markov process. We assume that (InVt) admits a stationary density f that we want to estimate. Only the price process Y-t is observed at n discrete times with regular sampling interval Delta. We propose a non-parametric estimator for f obtained by a penalized projection method. Under mixing assumptions on (V-y), we derive bounds for the quadratic risk of the estimator. Assuming that Delta = Delta(n) tends to 0 while the number of observations and the length of the observation time tend to infinity, we discuss the rate of convergence of the risk. Examples of models included in this framework are given.
引用
收藏
页码:875 / 893
页数:19
相关论文
共 50 条
  • [1] Penalized contrast estimator for adaptive density deconvolution
    Comte, Fabienne
    Rozenholc, Yves
    Taupin, Marie-Luce
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2006, 34 (03): : 431 - 452
  • [2] Superefficiency of a projection density estimator
    Bosq, D
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2005, 33 (01): : 21 - 37
  • [3] A non-parametric estimator for stochastic volatility density
    Ouamaliche, Soufiane
    Sayah, Awatef
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL ECONOMICS AND ECONOMETRICS, 2021, 11 (04) : 349 - 367
  • [4] Consistency of minimizing a penalized density power divergence estimator for mixing distribution
    Lee, Taewook
    Lee, Sangyeol
    [J]. STATISTICAL PAPERS, 2009, 50 (01) : 67 - 80
  • [5] Consistency of minimizing a penalized density power divergence estimator for mixing distribution
    Taewook Lee
    Sangyeol Lee
    [J]. Statistical Papers, 2009, 50 : 67 - 80
  • [6] A large deviations theorem for the projection method density estimator
    Bitouzé, D
    Louani, D
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (05): : 441 - 444
  • [7] The Penalized Analytic Center Estimator
    Knight, Keith
    [J]. ECONOMETRIC REVIEWS, 2016, 35 (8-10) : 1471 - 1484
  • [8] Superoptimal estimator of the spectral density by adaptive projection: an application to the estimator of a moving average order
    Souare, Mory
    [J]. COMPTES RENDUS MATHEMATIQUE, 2008, 346 (17-18) : 999 - 1002
  • [9] The Entropy Penalized Minimum Energy Estimator
    Pequito, Sergio
    Pedro Aguiar, A.
    Gomes, Diogo A.
    [J]. PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 1285 - 1290
  • [10] RATE OF CONVERGENCE IN L2 OF THE PROJECTION ESTIMATOR OF THE DISTRIBUTION DENSITY
    VAPNIK, VN
    MARKOVICH, NM
    STEFANYUK, AR
    [J]. AUTOMATION AND REMOTE CONTROL, 1992, 53 (05) : 677 - 686