A NOTE ON LATTICE-FACE POLYTOPES AND THEIR EHRHART POLYNOMIALS

被引:3
|
作者
Liu, Fu [1 ]
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
关键词
Ehrhart polynomial; lattice-face; polytope;
D O I
10.1090/S0002-9939-09-09897-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We remove an unnecessary restriction in the definition of lattice-face polytopes and show that with the new definition, the Ehrhart polynomial of a lattice-face polytope still has the property that each coefficient is the normalized volume of a projection of the original polytope. Furthermore, we show that the new family of lattice-face polytopes contains all possible combinatorial types of rational polytopes.
引用
收藏
页码:3247 / 3258
页数:12
相关论文
共 50 条
  • [1] Ehrhart polynomials of lattice-face polytopes
    Liu, Fu
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (06) : 3041 - 3069
  • [2] Notes on lattice points of zonotopes and lattice-face polytopes
    Bey, Christian
    Henk, Martin
    Henze, Matthias
    Linke, Eva
    [J]. DISCRETE MATHEMATICS, 2011, 311 (8-9) : 634 - 644
  • [3] Ehrhart polynomials of lattice polytopes with normalized volumes 5
    Tsuchiya, Akiyoshi
    [J]. JOURNAL OF COMBINATORICS, 2019, 10 (02) : 283 - 290
  • [4] Ehrhart polynomials of cyclic polytopes
    Liu, F
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2005, 111 (01) : 111 - 127
  • [5] Volumes and Ehrhart polynomials of flow polytopes
    Karola Mészáros
    Alejandro H. Morales
    [J]. Mathematische Zeitschrift, 2019, 293 : 1369 - 1401
  • [6] Interlacing Ehrhart polynomials of reflexive polytopes
    Higashitani, Akihiro
    Kummer, Mario
    Michalek, Mateusz
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2017, 23 (04): : 2977 - 2998
  • [7] Ehrhart Polynomials of Matroid Polytopes and Polymatroids
    Jesús A. De Loera
    David C. Haws
    Matthias Köppe
    [J]. Discrete & Computational Geometry, 2009, 42 : 670 - 702
  • [8] Ehrhart Polynomials of Matroid Polytopes and Polymatroids
    De Loera, Jesus A.
    Haws, David C.
    Koeppe, Matthias
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 42 (04) : 670 - 702
  • [9] Ehrhart Polynomials of Matroid Polytopes and Polymatroids
    Jesús A. De Loera
    David C. Haws
    Matthias Köppe
    [J]. Discrete & Computational Geometry, 2009, 42 (4) : 703 - 704
  • [10] Interlacing Ehrhart polynomials of reflexive polytopes
    Akihiro Higashitani
    Mario Kummer
    Mateusz Michałek
    [J]. Selecta Mathematica, 2017, 23 : 2977 - 2998