Ehrhart polynomials of lattice polytopes with normalized volumes 5

被引:0
|
作者
Tsuchiya, Akiyoshi [1 ]
机构
[1] Osaka Univ, Dept Pure & Appl Math, Grad Sch Informat Sci & Technol, Suita, Osaka 5650871, Japan
关键词
delta-polynomial; delta-vector; Ehrhart polynomial; Spanning polytope; 3-POLYTOPES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A complete classification of the delta-vectors of lattice polytopes whose normalized volumes are at most 4 is known. In the present paper, we will classify all the delta-vectors of lattice polytopes with normalized volumes 5.
引用
收藏
页码:283 / 290
页数:8
相关论文
共 50 条
  • [1] Volumes and Ehrhart polynomials of flow polytopes
    Karola Mészáros
    Alejandro H. Morales
    [J]. Mathematische Zeitschrift, 2019, 293 : 1369 - 1401
  • [2] Volumes and Ehrhart polynomials of flow polytopes
    Meszaros, Karola
    Morales, Alejandro H.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2019, 293 (3-4) : 1369 - 1401
  • [3] Ehrhart polynomials of convex polytopes with small volumes
    Hibi, Takayuki
    Higashitani, Akihiro
    Nagazawa, Yuuki
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (02) : 226 - 232
  • [4] Ehrhart polynomials of lattice-face polytopes
    Liu, Fu
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (06) : 3041 - 3069
  • [5] A NOTE ON LATTICE-FACE POLYTOPES AND THEIR EHRHART POLYNOMIALS
    Liu, Fu
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (10) : 3247 - 3258
  • [6] Ehrhart polynomials of cyclic polytopes
    Liu, F
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2005, 111 (01) : 111 - 127
  • [7] Interlacing Ehrhart polynomials of reflexive polytopes
    Higashitani, Akihiro
    Kummer, Mario
    Michalek, Mateusz
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2017, 23 (04): : 2977 - 2998
  • [8] Ehrhart Polynomials of Matroid Polytopes and Polymatroids
    Jesús A. De Loera
    David C. Haws
    Matthias Köppe
    [J]. Discrete & Computational Geometry, 2009, 42 : 670 - 702
  • [9] Ehrhart Polynomials of Matroid Polytopes and Polymatroids
    De Loera, Jesus A.
    Haws, David C.
    Koeppe, Matthias
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 42 (04) : 670 - 702
  • [10] Ehrhart Polynomials of Matroid Polytopes and Polymatroids
    Jesús A. De Loera
    David C. Haws
    Matthias Köppe
    [J]. Discrete & Computational Geometry, 2009, 42 (4) : 703 - 704