Low-cost, Low-bias and Low-input RNA-seq with High Experimental Verifiability based on Semiconductor Sequencing

被引:8
|
作者
Mai, Zhibiao [1 ]
Xiao, Chuanle [1 ]
Jin, Jingjie [1 ]
Zhang, Gong [1 ]
机构
[1] Jinan Univ, Inst Life & Hlth Engn, Guangdong Higher Educ Inst, Key Lab Funct Prot Res, Guangzhou 510632, Guangdong, Peoples R China
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
D O I
10.1038/s41598-017-01165-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Low-input RNA-seq is powerful to represent the gene expression profiles with limited number of cells, especially when single-cell variations are not the aim. However, pre-amplification-based and molecule index-based library construction methods boost bias or require higher throughput. Here we demonstrate a simple, low-cost, low-bias and low-input RNA-seq with ion torrent semiconductor sequencing (LIEA RNA-seq). We also developed highly accurate and error-tolerant spliced mapping algorithm FANSe2splice to accurately map the single-ended reads to the reference genome with better experimental verifiability than the previous spliced mappers. Combining the experimental and computational advancements, our solution is comparable with the bulk mRNA-seq in quantification, reliably detects splice junctions and minimizes the bias with much less mappable reads.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Erratum: Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput
    Todd M Gierahn
    Marc H Wadsworth
    Travis K Hughes
    Bryan D Bryson
    Andrew Butler
    Rahul Satija
    Sarah Fortune
    J Christopher Love
    Alex K Shalek
    Nature Methods, 2017, 14 : 752 - 752
  • [22] Comparative analysis of RNA sequencing methods for degraded or low-input samples
    Xian Adiconis
    Diego Borges-Rivera
    Rahul Satija
    David S DeLuca
    Michele A Busby
    Aaron M Berlin
    Andrey Sivachenko
    Dawn Anne Thompson
    Alec Wysoker
    Timothy Fennell
    Andreas Gnirke
    Nathalie Pochet
    Aviv Regev
    Joshua Z Levin
    Nature Methods, 2013, 10 : 623 - 629
  • [23] Comparative analysis of RNA sequencing methods for degraded or low-input samples
    Adiconis, Xian
    Borges-Rivera, Diego
    Satija, Rahul
    DeLuca, David S.
    Busby, Michele A.
    Berlin, Aaron M.
    Sivachenko, Andrey
    Thompson, Dawn Anne
    Wysoker, Alec
    Fennell, Timothy
    Gnirke, Andreas
    Pochet, Nathalie
    Regev, Aviv
    Levin, Joshua Z.
    NATURE METHODS, 2013, 10 (07) : 623 - +
  • [24] Optimized Method for Robust Transcriptome Profiling of Minute Tissues Using Laser Capture Microdissection and Low-Input RNA-Seq
    Farris, Shannon
    Wang, Yu
    Ward, James M.
    Dudek, Serena M.
    FRONTIERS IN MOLECULAR NEUROSCIENCE, 2017, 10
  • [25] Rapid and efficient methods for preparing rRNA-depleted and directional RNA-Seq libraries from low-input and FFPE RNA samples
    Sooknanan, Roy
    Hitchen, John
    CANCER RESEARCH, 2012, 72
  • [26] Low-Bias RNA Sequencing of the HIV-2 Genome from Blood Plasma
    James, Katherine L.
    de Silva, Thushan I.
    Brown, Katherine
    Whittle, Hilton
    Taylor, Stephen
    McVean, Gilean
    Esbjornsson, Joakim
    Rowland-Jones, Sarah L.
    JOURNAL OF VIROLOGY, 2019, 93 (01)
  • [27] Mechanistic insights into HuR inhibitor MS-444 arresting embryonic development revealed by low-input RNA-seq and STORM
    Yongqiang Nie
    Wei Xu
    Geng G. Tian
    Xiaowei Li
    Yan Guo
    Xuefeng Liu
    Lin He
    Zhifeng Shao
    Xiaoyong Li
    Ji Wu
    Cell Biology and Toxicology, 2022, 38 : 1175 - 1197
  • [28] Mechanistic insights into HuR inhibitor MS-444 arresting embryonic development revealed by low-input RNA-seq and STORM
    Nie, Yongqiang
    Xu, Wei
    Tian, Geng G.
    Li, Xiaowei
    Guo, Yan
    Liu, Xuefeng
    He, Lin
    Shao, Zhifeng
    Li, Xiaoyong
    Wu, Ji
    CELL BIOLOGY AND TOXICOLOGY, 2022, 38 (06) : 1175 - 1197
  • [29] TEQUILA-seq: a versatile and low-cost method for targeted long-read RNA sequencing
    Feng Wang
    Yang Xu
    Robert Wang
    Beatrice Zhang
    Noah Smith
    Amber Notaro
    Samantha Gaerlan
    Eric Kutschera
    Kathryn E. Kadash-Edmondson
    Yi Xing
    Lan Lin
    Nature Communications, 14
  • [30] TEQUILA-seq: a versatile and low-cost method for targeted long-read RNA sequencing
    Wang, Feng
    Xu, Yang
    Wang, Robert
    Zhang, Beatrice
    Smith, Noah
    Notaro, Amber
    Gaerlan, Samantha
    Kutschera, Eric
    Kadash-Edmondson, Kathryn E. E.
    Xing, Yi
    Lin, Lan
    NATURE COMMUNICATIONS, 2023, 14 (01)