Comparative analysis of RNA sequencing methods for degraded or low-input samples

被引:324
|
作者
Adiconis, Xian [1 ]
Borges-Rivera, Diego [1 ]
Satija, Rahul [1 ]
DeLuca, David S. [1 ]
Busby, Michele A. [1 ]
Berlin, Aaron M. [1 ]
Sivachenko, Andrey [1 ]
Thompson, Dawn Anne [1 ]
Wysoker, Alec [1 ]
Fennell, Timothy [1 ]
Gnirke, Andreas [1 ]
Pochet, Nathalie [1 ]
Regev, Aviv [1 ,2 ,3 ]
Levin, Joshua Z. [1 ]
机构
[1] Broad Inst MIT & Harvard, Cambridge, MA USA
[2] MIT, Dept Biol, Cambridge, MA USA
[3] MIT, Howard Hughes Med Inst, Cambridge, MA USA
基金
美国国家卫生研究院;
关键词
MESSENGER-RNA; RIBOSOMAL-RNA; SEQ; SINGLE; TRANSCRIPTOME; EFFICIENT; ALIGNMENT; DNA;
D O I
10.1038/nmeth.2483
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
RNA-seq is an effective method for studying the transcriptome, but it can be difficult to apply to scarce or degraded RNA from fixed clinical samples, rare cell populations or cadavers. Recent studies have proposed several methods for RNA-seq of low-quality and/or low-quantity samples, but the relative merits of these methods have not been systematically analyzed. Here we compare five such methods using metrics relevant to transcriptome annotation, transcript discovery and gene expression. Using a single human RNA sample, we constructed and sequenced ten libraries with these methods and compared them against two control libraries. We found that the RNase H method performed best for chemically fragmented, low-quality RNA, and we confirmed this through analysis of actual degraded samples. RNase H can even effectively replace oligo(dT)-based methods for standard RNA-seq. SMART and NuGEN had distinct strengths for measuring low-quantity RNA. Our analysis allows biologists to select the most suitable methods and provides a benchmark for future method development.
引用
收藏
页码:623 / +
页数:10
相关论文
共 50 条
  • [1] Comparative analysis of RNA sequencing methods for degraded or low-input samples
    Xian Adiconis
    Diego Borges-Rivera
    Rahul Satija
    David S DeLuca
    Michele A Busby
    Aaron M Berlin
    Andrey Sivachenko
    Dawn Anne Thompson
    Alec Wysoker
    Timothy Fennell
    Andreas Gnirke
    Nathalie Pochet
    Aviv Regev
    Joshua Z Levin
    Nature Methods, 2013, 10 : 623 - 629
  • [2] Correction: Corrigendum: Comparative analysis of RNA sequencing methods for degraded or low-input samples
    Xian Adiconis
    Diego Borges-Rivera
    Rahul Satija
    David S DeLuca
    Michele A Busby
    Aaron M Berlin
    Andrey Sivachenko
    Dawn Anne Thompson
    Alec Wysoker
    Timothy Fennell
    Andreas Gnirke
    Nathalie Pochet
    Aviv Regev
    Joshua Z Levin
    Nature Methods, 2014, 11 : 210 - 210
  • [3] Comparative analysis of RNA sequencing methods for degraded or low-input samples (vol 10, pg 623, 2013)
    Adiconis, Xian
    Borges-Rivera, Diego
    Satija, Rahul
    DeLuca, David S.
    Busby, Michele A.
    Berlin, Aaron M.
    Sivachenko, Andrey
    Thompson, Dawn Anne
    Wysoker, Alec
    Fennell, Timothy
    Gnirke, Andreas
    Pochet, Nathalie
    Regev, Aviv
    Levin, Joshua Z.
    NATURE METHODS, 2014, 11 (02) : 210 - 210
  • [4] A comparative analysis of RNA sequencing methods with ribosome RNA depletion for degraded and low-input total RNA from formalin-fixed and paraffin-embedded samples
    Xiaojing Lin
    Lihong Qiu
    Xue Song
    Junyan Hou
    Weizhi Chen
    Jun Zhao
    BMC Genomics, 20
  • [5] A comparative analysis of RNA sequencing methods with ribosome RNA depletion for degraded and low-input total RNA from formalin-fixed and paraffin-embedded samples
    Lin, Xiaojing
    Qiu, Lihong
    Song, Xue
    Hou, Junyan
    Chen, Weizhi
    Zhao, Jun
    BMC GENOMICS, 2019, 20 (01)
  • [6] A comparative analysis of RNA sequencing methods with ribosome RNA depletion for degraded and low-input total RNA from formalin-fixed and paraffin-embedded samples.
    Lin, Xiaojing
    Qiu, Lihong
    Song, Xue
    Hou, Junyan
    Chen, Weizhi
    Zhao, Jun
    JOURNAL OF CLINICAL ONCOLOGY, 2019, 37 (15)
  • [7] Comparative analysis of improved m6A sequencing based on antibody optimization for low-input samples
    Lu, Jiafeng
    Xia, Wenjuan
    Li, Jincheng
    Zhang, Liya
    Qian, Chunfeng
    Li, Hong
    Huang, Boxian
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [8] Improved Gene Detection from Low-Input FFPE Samples Using Total RNA Sequencing
    Pavlica, J.
    Haimes, J.
    Giorda, K.
    Gelagay, D.
    Sanders, T.
    Garnett, A.
    Hanek, A.
    Marshall, C.
    Reed, K.
    Harrison, T.
    Kudlow, B.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2024, 26 (11): : S128 - S128
  • [9] Depletion of tRNA-halves enables effective small RNA sequencing of low-input murine serum samples
    Alan Van Goethem
    Nurten Yigit
    Celine Everaert
    Myrthala Moreno-Smith
    Liselot M. Mus
    Eveline Barbieri
    Frank Speleman
    Pieter Mestdagh
    Jason Shohet
    Tom Van Maerken
    Jo Vandesompele
    Scientific Reports, 6
  • [10] Depletion of tRNA-halves enables effective small RNA sequencing of low-input murine serum samples
    Van Goethem, Alan
    Yigit, Nurten
    Everaert, Celine
    Moreno-Smith, Myrthala
    Mus, Liselot M.
    Barbieri, Eveline
    Speleman, Frank
    Mestdagh, Pieter
    Shohet, Jason
    Van Maerken, Tom
    Vandesompele, Jo
    SCIENTIFIC REPORTS, 2016, 6