Improved Genome Editing Efficiency and Flexibility Using Modified Oligonucleotides with TALEN and CRISPR-Cas9 Nucleases

被引:211
|
作者
Renaud, Jean-Baptiste [1 ]
Boix, Charlotte [1 ]
Charpentier, Marine [1 ]
De Cian, Anne [1 ]
Cochennec, Julien [1 ]
Duvernois-Berthet, Evelyne [1 ]
Perrouault, Loic [1 ]
Tesson, Laurent [2 ,3 ]
Edouard, Joanne [5 ]
Thinard, Reynald [2 ,3 ]
Cherifi, Yacine [4 ]
Menoret, Severine [2 ,3 ]
Fontaniere, Sandra [4 ]
De Croze, Noemie [5 ]
Fraichard, Alexandre [4 ]
Sohm, Frederic [5 ]
Anegon, Ignacio [2 ,3 ]
Concordet, Jean-Paul [1 ]
Giovannangeli, Carine [1 ]
机构
[1] CNRS, INSERM, Museum Natl Hist Nat, U1154,UMR7196, F-75005 Paris, France
[2] CHU Nantes, INSERM, U1064, F-44093 Nantes, France
[3] CNRS, Platform Rat Transgenesis Immunophen, UMS3556, F-44093 Nantes, France
[4] genOway, F-69007 Lyon, France
[5] CNRS, INRA, Inst Neurobiol A Fessard, Amagen,UMS 3504,UMS 1374, F-91198 Gif Sur Yvette, France
来源
CELL REPORTS | 2016年 / 14卷 / 09期
关键词
ZINC-FINGER NUCLEASES; DONOR DNA; CELLS; MICROHOMOLOGY; SYSTEM; REPAIR; GUIDE; ENDONUCLEASE; CRISPR/CAS9; PLATFORM;
D O I
10.1016/j.celrep.2016.02.018
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Genome editing has now been reported in many systems using TALEN and CRISPR-Cas9 nucleases. Precise mutations can be introduced during homology-directed repair with donor DNA carrying the wanted sequence edit, but efficiency is usually lower than for gene knockout and optimal strategies have not been extensively investigated. Here, we show that using phosphorothioate-modified oligonucleotides strongly enhances genome editing efficiency of single-stranded oligonucleotide donors in cultured cells. In addition, it provides better design flexibility, allowing insertions more than 100 bp long. Despite previous reports of phosphorothioate-modified oligonucleotide toxicity, clones of edited cells are readily isolated and targeted sequence insertions are achieved in rats and mice with very high frequency, allowing for homozygous loxP site insertion at the mouse ROSA locus in particular. Finally, when detected, imprecise knockin events exhibit indels that are asymmetrically positioned, consistent with genome editing taking place by two steps of single-strand annealing.
引用
收藏
页码:2263 / 2272
页数:10
相关论文
共 50 条
  • [31] CRISPR-P 2.0: An Improved CRISPR-Cas9 Tool for Genome Editing in Plants
    Liu, Hao
    Ding, Yuduan
    Zhou, Yanqing
    Jin, Wenqi
    Xie, Kabin
    Chen, Ling-Ling
    MOLECULAR PLANT, 2017, 10 (03) : 530 - 532
  • [32] Targeted genome editing in Aedes aegypti using TALEN and CRISPR/Cas9
    Aryan, Azadeh
    Basu, Sanjay
    Anderson, Michelle
    Overcash, Justin
    Myles, Kevin
    Adelman, Zach
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [33] Precision genome editing using combinatorial viral vector delivery of CRISPR-Cas9 nucleases and donor DNA constructs
    Li, Zhen
    Wang, Xiaoling
    Janssen, Josephine M.
    Liu, Jin
    Tasca, Francesca
    Hoeben, Rob C.
    Goncalves, Manuel A. F., V
    NUCLEIC ACIDS RESEARCH, 2024, 53 (02)
  • [34] Genetically modified crop regulations: scope and opportunity using the CRISPR-Cas9 genome editing approach
    Shweta Gupta
    Adarsh Kumar
    Rupali Patel
    Vinay Kumar
    Molecular Biology Reports, 2021, 48 : 4851 - 4863
  • [35] Genome editing by CRISPR-Cas9 technology in Petunia hybrida
    Chopy, M.
    Morel, P.
    Bento, S. Rodrigues
    Vandenbussche, M.
    XXVI INTERNATIONAL EUCARPIA SYMPOSIUM SECTION ORNAMENTALS: EDITING NOVELTY, 2020, 1283 : 209 - 217
  • [36] CRISPR-Cas9: from Genome Editing to Cancer Research
    Chen, Si
    Sun, Heng
    Miao, Kai
    Deng, Chu-Xia
    INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2016, 12 (12): : 1427 - 1436
  • [37] CRISPR-Cas9 Genome Editing for Treatment of Atherogenic Dyslipidemia
    Chadwick, Alexandra C.
    Musunuru, Kiran
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2018, 38 (01) : 12 - 18
  • [38] Exploring the potential of genome editing CRISPR-Cas9 technology
    Singh, Vijai
    Braddick, Darren
    Dhar, Pawan Kumar
    GENE, 2017, 599 : 1 - 18
  • [39] A CRISPR-Cas9 System for Genome Editing of Fusarium proliferatum
    Ferrara, Massimo
    Haidukowski, Miriam
    Logrieco, Antonio F.
    Leslie, John F.
    Mule, Giuseppina
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [40] Temperature effect on CRISPR-Cas9 mediated genome editing
    Xiang, Guanghai
    Zhang, Xingying
    An, Chenrui
    Cheng, Chen
    Wang, Haoyi
    JOURNAL OF GENETICS AND GENOMICS, 2017, 44 (04) : 199 - 205