Shape preserving representations for trigonometric polynomial curves

被引:81
|
作者
Pena, JM
机构
[1] Depto. de Matemática Aplicada, Universidad de Zaragoza
关键词
trigonometric polynomial curve; shape preservation; total positivity;
D O I
10.1016/S0167-8396(96)00017-9
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper has two main goals. Firstly, we show that the space of trigonometric polynomials tau(m) = span(1, cos t, sin t,..., cos mt, sin mt) is not suitable for those methods of CAGD which use control polygons. It is well-known that the bases with good shape preserving properties are the normalized totally positive bases and we prove here that tau(m), does not possess normalized totally positive bases. Secondly, we show that the space C-m = span(1, cos t,..., cos mt) is suitable for design purposes using control polygons. In fact, we construct a basis C-m of C-m with optimal shape preserving properties and analyze some aspects for the computation of the corresponding curves.
引用
收藏
页码:5 / 11
页数:7
相关论文
共 50 条
  • [21] Shape preserving least-squares approximation by polynomial parametric spline curves
    Juttler, B
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 1997, 14 (08) : 731 - 747
  • [22] Uniform trigonometric polynomial B-spline curves
    Yonggang Lü
    Guozhao Wang
    Xunnian Yang
    [J]. Science in China Series F Information Sciences, 2002, 45 : 335 - 343
  • [23] Quadratic trigonometric polynomial curves concerning local control
    Han, XL
    [J]. APPLIED NUMERICAL MATHEMATICS, 2006, 56 (01) : 105 - 115
  • [24] Uniform trigonometric polynomial B-spline curves
    Lü, YG
    Wang, GZ
    Yang, XN
    [J]. SCIENCE IN CHINA SERIES F, 2002, 45 (05): : 335 - 343
  • [25] Uniform trigonometric polynomial B-spline curves
    吕勇刚
    汪国昭
    杨勋年
    [J]. Science China(Information Sciences), 2002, (05) : 335 - 343
  • [26] Shape preserving interpolation of positive and range-restricted data using quintic trigonometric Bezier curves
    Mahzir, Salwa Syazwani
    Misro, Md Yushalify
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2023, 80 : 122 - 133
  • [27] Trigonometric Spline Curves That Shape Can Adjust
    Yan, LanLan
    Liang, JiongFeng
    [J]. PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION (ICMS2009), VOL 6, 2009, : 9 - 14
  • [28] Shape analysis of cubic trigonometric Bezier curves with a shape parameter
    Han, Xi-An
    Huang, XiLi
    Ma, YiChen
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (06) : 2527 - 2533
  • [29] When Is a Trigonometric Polynomial Not a Trigonometric Polynomial?
    Borzellino, Joseph E.
    Sherman, Morgan
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2012, 119 (05): : 422 - 425
  • [30] Trigonometric polynomial B-spline with shape parameter
    Wang, WT
    Wang, GZ
    [J]. PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2004, 14 (11) : 1023 - 1026