Implementation of parameter estimation in mechanistic models by dynamic optimization

被引:0
|
作者
Zhu, Xuemei [1 ]
Liu, Rucheng [1 ]
Wang, Shuqing [2 ]
机构
[1] Nanjing Normal Univ, Coll Elect & Automat Engn, Nanjing 210042, Jiangsu Provinc, Peoples R China
[2] Zhejiang Univ, Inst Adv Proc Control, Hangzhou 310027, Peoples R China
关键词
parameter estimation; mechanistic model; dynamic optimization; orthogonal collocation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The main concern of this paper is the implementation of estimation of time-varying parameters in mechanistic models. A mechanistic model is always a set of nonlinear differential algebraic equations based on basic principles of physics, chemistry, biology etc. by writing down conservation or balance equations. These models usually involve parameters which are time-varying and must be estimated from experimental data or process data. The proposed parameter estimation approach is to minimize the discrepancy between the values of the measured and model simulated outputs. The dynamic optimization is employed due to the time-varying property of estimated parameters. The sequential quadratic programming and orthogonal collocation are used to solve the nonlinear dynamic optimization problem. The approach is verified on a pilot distillation column for estimating tray efficiencies of both the stripping and the rectifying sections and the feed composition.
引用
收藏
页码:7683 / 7687
页数:5
相关论文
共 50 条
  • [31] pyPESTO: a modular and scalable tool for parameter estimation for dynamic models
    Schaelte, Yannik
    Froehlich, Fabian
    Jost, Paul J.
    Vanhoefer, Jakob
    Pathirana, Dilan
    Stapor, Paul
    Lakrisenko, Polina
    Wang, Dantong
    Raimundez, Elba
    Merkt, Simon
    Schmiester, Leonard
    Staedter, Philipp
    Grein, Stephan
    Dudkin, Erika
    Doresic, Domagoj
    Weindl, Daniel
    Hasenauer, Jan
    BIOINFORMATICS, 2023, 39 (11)
  • [32] Sequential Bayesian parameter estimation of stochastic dynamic load models
    Maldonado, Daniel Adrian
    Rao, Vishwas
    Anitescu, Mihai
    Patel, Vivak
    ELECTRIC POWER SYSTEMS RESEARCH, 2020, 189
  • [33] Parameter Estimation for Dynamic HVAC Models with Limited Sensor Information
    Hariharan, Natarajkumar
    Rasmussen, Bryan P.
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 5886 - 5891
  • [34] Robust and efficient parameter estimation in dynamic models of biological systems
    Gabor, Attila
    Banga, Julio R.
    BMC SYSTEMS BIOLOGY, 2015, 9
  • [35] Implementation of Neural Network Models for Parameter Estimation of a PEM-Electrolyzer
    Becker, Steffen
    Karri, Vishy
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2010, 14 (06) : 735 - 740
  • [36] Robustness metrics for dynamic optimization models under parameter uncertainty
    Samsatli, NJ
    Papageorgiou, LG
    Shah, N
    AICHE JOURNAL, 1998, 44 (09) : 1993 - 2006
  • [37] Robustness metrics for dynamic optimization models under parameter uncertainty
    Centre for Process Systems Engineering, Imperial College of Science, Technology and Medicine, London SW7 2BY, United Kingdom
    AIChE J., 9 (1993-2006):
  • [38] Parallel parameter optimization algorithm in dynamic general equilibrium models
    Gruzdev, Arseniy P.
    Melnikov, Nikolai B.
    Dalton, Michael G.
    Weitzel, Matthias
    O'Neill, Brian C.
    IFAC PAPERSONLINE, 2018, 51 (32): : 562 - 567
  • [39] An automatic initialization procedure in parameter estimation problems with parameter-affine dynamic models
    Bonilla, J.
    Diehl, M.
    Logist, F.
    De Moor, B.
    Van Impe, J.
    COMPUTERS & CHEMICAL ENGINEERING, 2010, 34 (06) : 953 - 964
  • [40] Spatial dynamic models with intertemporal optimization: Specification and estimation
    Jeong, Hanbat
    Lee, Lung-fei
    JOURNAL OF ECONOMETRICS, 2020, 218 (01) : 82 - 104