Parallel parameter optimization algorithm in dynamic general equilibrium models

被引:1
|
作者
Gruzdev, Arseniy P. [1 ]
Melnikov, Nikolai B. [1 ,2 ]
Dalton, Michael G. [3 ]
Weitzel, Matthias [4 ]
O'Neill, Brian C. [5 ]
机构
[1] Lomonosov Moscow State Univ, Moscow, Russia
[2] RAS, Cent Econ & Math Inst, Moscow, Russia
[3] NOAA, Seattle, WA USA
[4] European Commiss, Joint Res Ctr, Seville, Spain
[5] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 32期
基金
美国国家科学基金会;
关键词
Computational general equilibrium model; Economic growth; Iterative methods; Parallel computing; Energy economics; Climate impacts;
D O I
10.1016/j.ifacol.2018.11.482
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a parallel parameter optimization algorithm for reproducing future projections of certain model outputs in dynamic general equilibrium models. The optimization problem is reduced to a nonlinear system of equations. The Jacobian matrix for a Newton type solver in the problem is generated in parallel. The parameter optimization algorithm is implemented for parallel systems with distributed memory by using MPI. To achieve better performance of the parallel algorithm we use the parallel Fair-Taylor algorithm for computing an equilibrium path. Calculation of prices, input-output ratios and international trade for different time steps is carried out in parallel at each iteration of the method. The solution method is implemented for parallel systems with shared memory by using OpenMP. The effectiveness of the hybrid MPI+OpenMP parallel code for parameter optimization is demonstrated in the example of a global multi-sector energy economics model with scenarios that are used for studying climate change impacts on land use. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:562 / 567
页数:6
相关论文
共 50 条
  • [1] A Parallel Differential Evolution Algorithm for Parameter Estimation in Dynamic Models of Biological Systems
    Penas, D. R.
    Banga, Julio R.
    Gonzalez, P.
    Doallo, R.
    8TH INTERNATIONAL CONFERENCE ON PRACTICAL APPLICATIONS OF COMPUTATIONAL BIOLOGY & BIOINFORMATICS (PACBB 2014), 2014, 294 : 173 - 181
  • [2] Parallel genetic algorithm with the dynamic control parameter
    Lis, J
    1996 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION (ICEC '96), PROCEEDINGS OF, 1996, : 324 - 329
  • [3] Dynamic Identification of Dynamic Stochastic General Equilibrium Models
    Komunjer, Ivana
    Ng, Serena
    ECONOMETRICA, 2011, 79 (06) : 1995 - 2032
  • [4] A novel efficient optimization algorithm for parameter estimation of building thermal dynamic models
    Wang, Jiangyu
    Chen, Huanxin
    Yuan, Yue
    Huang, Yao
    BUILDING AND ENVIRONMENT, 2019, 153 : 233 - 240
  • [5] A coupling algorithm for computing large-scale dynamic computable general equilibrium models
    Yang, ZL
    ECONOMIC MODELLING, 1999, 16 (03) : 455 - 473
  • [6] Dynamic Stochastic General Equilibrium Models and Their Discontents
    Bayoumi, Tamim
    International Journal of Central Banking, 2016, 12 (03): : 403 - 411
  • [7] Reducing models of general economic equilibrium to optimization problems
    Norkin, VI
    CYBERNETICS AND SYSTEMS ANALYSIS, 1999, 35 (05) : 743 - 753
  • [8] Reducing models of general economic equilibrium to optimization problems
    V. I. Norkin
    Cybernetics and Systems Analysis, 1999, 35 : 743 - 753
  • [9] DYNAMIC GENERAL EQUILIBRIUM TAX MODELS WITH ADJUSTMENT COSTS
    BOVENBERG, AL
    MATHEMATICAL PROGRAMMING STUDY, 1985, 23 (OCT): : 40 - 55
  • [10] Money shock in Dynamic Stochastic General Equilibrium Models
    liu, Yang
    li, Li
    WKDD: 2009 SECOND INTERNATIONAL WORKSHOP ON KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2009, : 517 - +