Parallel parameter optimization algorithm in dynamic general equilibrium models

被引:1
|
作者
Gruzdev, Arseniy P. [1 ]
Melnikov, Nikolai B. [1 ,2 ]
Dalton, Michael G. [3 ]
Weitzel, Matthias [4 ]
O'Neill, Brian C. [5 ]
机构
[1] Lomonosov Moscow State Univ, Moscow, Russia
[2] RAS, Cent Econ & Math Inst, Moscow, Russia
[3] NOAA, Seattle, WA USA
[4] European Commiss, Joint Res Ctr, Seville, Spain
[5] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 32期
基金
美国国家科学基金会;
关键词
Computational general equilibrium model; Economic growth; Iterative methods; Parallel computing; Energy economics; Climate impacts;
D O I
10.1016/j.ifacol.2018.11.482
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a parallel parameter optimization algorithm for reproducing future projections of certain model outputs in dynamic general equilibrium models. The optimization problem is reduced to a nonlinear system of equations. The Jacobian matrix for a Newton type solver in the problem is generated in parallel. The parameter optimization algorithm is implemented for parallel systems with distributed memory by using MPI. To achieve better performance of the parallel algorithm we use the parallel Fair-Taylor algorithm for computing an equilibrium path. Calculation of prices, input-output ratios and international trade for different time steps is carried out in parallel at each iteration of the method. The solution method is implemented for parallel systems with shared memory by using OpenMP. The effectiveness of the hybrid MPI+OpenMP parallel code for parameter optimization is demonstrated in the example of a global multi-sector energy economics model with scenarios that are used for studying climate change impacts on land use. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:562 / 567
页数:6
相关论文
共 50 条
  • [21] Chaotic Aquila Optimization Algorithm for Solving Phase Equilibrium Problems and Parameter Estimation of Semi-empirical Models
    Turgut, Oguz Emrah
    Turgut, Mert Sinan
    Kirtepe, Erhan
    JOURNAL OF BIONIC ENGINEERING, 2024, 21 (01) : 486 - 526
  • [22] General Optimization Strategies for Refining the In-Parameter-Order Algorithm
    Gao, Shiwei
    Lv, Jianghua
    Du, Binglei
    Jiang, Yaruo
    Ma, Shilong
    2014 14TH INTERNATIONAL CONFERENCE ON QUALITY SOFTWARE (QSIC 2014), 2014, : 21 - 26
  • [23] Dynamic stochastic general equilibrium models as a tool for policy analysis
    Kremer, Jana
    Lombardo, Giovanni
    von Thadden, Leopold
    Werner, Thomas
    CESIFO ECONOMIC STUDIES, 2006, 52 (04) : 640 - 665
  • [24] Using dynamic general equilibrium models for policy analysis: Introduction
    Harrison, GW
    Jensen, SEH
    Pedersen, LH
    Rutherford, TF
    USING DYNAMIC GENERAL EQUILIBRIUM MODELS FOR POLICY ANALYSIS, 2000, 248 : 1 - 12
  • [25] Asset pricing in dynamic stochastic general equilibrium models with indeterminacy
    Gershun, Natalia
    Harrison, Sharon G.
    MACROECONOMIC DYNAMICS, 2008, 12 (01) : 50 - 71
  • [26] Money and monetary policy in dynamic stochastic general equilibrium models
    Bhattacharjee, Arnab
    Thoenissen, Christoph
    MANCHESTER SCHOOL, 2007, 75 : 88 - 122
  • [27] Indirect inference and calibration of dynamic stochastic general equilibrium models
    Dridi, Ramdan
    Guay, Alain
    Renault, Eric
    JOURNAL OF ECONOMETRICS, 2007, 136 (02) : 397 - 430
  • [28] The Relaxation of Complementary Slackness Conditions in Dynamic General Equilibrium Models
    Vasilyev S.B.
    Pilnik N.P.
    Radionov S.A.
    Mathematical Models and Computer Simulations, 2019, 11 (4) : 611 - 621
  • [29] The scientific foundation of dynamic stochastic general equilibrium (DSGE) models
    Paul De Grauwe
    Public Choice, 2010, 144 : 413 - 443
  • [30] The scientific foundation of dynamic stochastic general equilibrium (DSGE) models
    De Grauwe, Paul
    PUBLIC CHOICE, 2010, 144 (3-4) : 413 - 443