Discrete-time port-Hamiltonian systems: A definition based on symplectic integration

被引:37
|
作者
Kotyczka, Paul [1 ]
Lefevre, Laurent [2 ]
机构
[1] Tech Univ Munich, Dept Mech Engn, Chair Automat Control, Boltzmannstr 15, D-85748 Garching, Germany
[2] Univ Grenoble Alpes, LCIS, 50 Rue Barthelemy Laffemas, F-26902 Valence, France
关键词
Port-Hamiltonian systems; Dirac structures; Discrete-time systems; Geometric numerical integration; Symplectic methods; PASSIVITY;
D O I
10.1016/j.sysconle.2019.104530
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce a new definition of discrete-time port-Hamiltonian (PH) systems, which results from structure-preserving discretization of explicit PH systems in time. We discretize the underlying continuous-time Dirac structure with the collocation method and add discrete-time dynamics by the use of symplectic numerical integration schemes. The conservation of a structural discrete-time energy balance - expressed in terms of the discrete-time Dirac structure - extends the notion of symplecticity of geometric integration schemes to open systems. We discuss the energy approximation errors in the context of the presented definition and show that their order for linear PH systems is consistent with the order of the numerical integration scheme. Implicit Gauss-Legendre methods and Lobatto IIIA/IIIB pairs for partitioned systems are examples for integration schemes that are covered by our definition. The statements on the numerical energy errors are illustrated by elementary numerical experiments. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Trajectory Tracking for Discrete-Time Port-Hamiltonian Systems
    Macchelli, Alessandro
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2022, 6 (3146-3151): : 3146 - 3151
  • [2] On discrete-time dissipative port-Hamiltonian (descriptor) systems
    Cherifi, Karim
    Gernandt, Hannes
    Hinsen, Dorothea
    Mehrmann, Volker
    [J]. MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2024, 36 (03) : 561 - 599
  • [3] Control Design for a Class of Discrete-Time Port-Hamiltonian Systems
    Macchelli, Alessandro
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (12) : 8224 - 8231
  • [4] Distributed-Parameter Port-Hamiltonian Systems in Discrete-Time
    Macchelli, Alessandro
    [J]. 2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 2931 - 2936
  • [5] Discrete-time port-Hamiltonian systems based on Gauss-Legendre collocation
    Kotyczka, Paul
    Lefevre, Laurent
    [J]. IFAC PAPERSONLINE, 2018, 51 (03): : 125 - 130
  • [6] On the Synthesis of Discrete-time Energy-based Regulators for Port-Hamiltonian Systems
    Macchelli, Alessandro
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 2889 - 2894
  • [7] A Discrete-Time Formulation of Nonlinear Distributed-Parameter Port-Hamiltonian Systems
    Macchelli, Alessandro
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 802 - 807
  • [8] Discrete port-Hamiltonian systems
    Talasila, V
    Clemente-Gallardo, J
    van der Schaft, AJ
    [J]. SYSTEMS & CONTROL LETTERS, 2006, 55 (06) : 478 - 486
  • [9] Discrete stochastic port-Hamiltonian systems
    Cordoni, Francesco Giuseppe
    Di Persio, Luca
    Muradore, Riccardo
    [J]. AUTOMATICA, 2022, 137
  • [10] Dirac Structures for a Class of Port-Hamiltonian Systems in Discrete Time
    Moreschini, Alessio
    Monaco, Salvatore
    Normand-Cyrot, Dorothee
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (03) : 1999 - 2006