A Discrete-Time Formulation of Nonlinear Distributed-Parameter Port-Hamiltonian Systems

被引:0
|
作者
Macchelli, Alessandro [1 ]
机构
[1] Univ Bologna, Dept Elect Elect & Informat Engn, I-40136 Bologna, Italy
来源
关键词
Sensors; Mathematical models; Output feedback; Sufficient conditions; Discrete-time systems; Control design; Partial differential equations; port-Hamiltonian systems; distributed-parameter systems; passivity-based control; sampled-data control; BOUNDARY CONTROL-SYSTEMS; EXPONENTIAL STABILIZATION; UNIQUENESS; STABILITY;
D O I
10.1109/LCSYS.2024.3404769
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter introduces a new framework of nonlinear, discrete-time, boundary control systems (BCSs) in the port-Hamiltonian form. The contribution is twofold. We start with a discrete-time approximation of a nonlinear port-Hamiltonian BCS, i.e., a dynamical system modelled by a nonlinear partial differential equation with boundary actuation and sensing. The most important feature is that the discretisation is performed in time only so that the "distributed nature" of the state is preserved. By approximating the gradient of the Hamiltonian density with its discrete gradient, the obtained sampled dynamics inherit the passivity of the original one. Besides, we prove that, under mild conditions, it is well-posed, i.e., the "next" state always exists. The second contribution deals with control design. More precisely, we have determined sufficient conditions for the plant dynamics and a static output feedback gain to make the closed-loop system asymptotically stable.
引用
收藏
页码:802 / 807
页数:6
相关论文
共 50 条
  • [1] Distributed-Parameter Port-Hamiltonian Systems in Discrete-Time
    Macchelli, Alessandro
    [J]. 2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 2931 - 2936
  • [2] Lagrangian and Port-Hamiltonian formulation for Distributed-parameter systems
    Schoeberl, M.
    Schlacher, K.
    [J]. IFAC PAPERSONLINE, 2015, 48 (01): : 610 - 615
  • [3] Boundary controllability for disturbed distributed-parameter port-Hamiltonian systems
    Nishida, C
    Yamakita, M
    [J]. SICE 2004 ANNUAL CONFERENCE, VOLS 1-3, 2004, : 2389 - 2394
  • [4] Disturbance structure decomposition for distributed-parameter port-Hamiltonian systems
    Nishida, G
    Yamakita, M
    [J]. 2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 2082 - 2087
  • [5] Explicit simplicial discretization of distributed-parameter port-Hamiltonian systems
    Seslija, Marko
    Scherpen, Jacquelien M. A.
    van der Schaft, Arjan
    [J]. AUTOMATICA, 2014, 50 (02) : 369 - 377
  • [6] A discrete exterior approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems
    Seslija, Marko
    Scherpen, Jacquelien M. A.
    van der Schaft, Arjan
    [J]. 2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 7003 - 7008
  • [7] Trajectory Tracking for Discrete-Time Port-Hamiltonian Systems
    Macchelli, Alessandro
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 3146 - 3151
  • [8] On discrete-time dissipative port-Hamiltonian (descriptor) systems
    Cherifi, Karim
    Gernandt, Hannes
    Hinsen, Dorothea
    Mehrmann, Volker
    [J]. MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2024, 36 (03) : 561 - 599
  • [9] Discrete exterior geometry approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems
    Seslija, Marko
    van der Schaft, Arjan
    Scherpen, Jacquelien M. A.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (06) : 1509 - 1531
  • [10] Control Design for a Class of Discrete-Time Port-Hamiltonian Systems
    Macchelli, Alessandro
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (12) : 8224 - 8231