Median-spectral-spatial transformation of hyperspectral data for sub-pixel anomaly detection

被引:0
|
作者
Fischer, Amber D. [1 ]
机构
[1] 21st Century Syst Inc, Honolulu, HI 96819 USA
关键词
remote sensing; hyperspectral; anomaly detection; target detection and identification; feature extraction;
D O I
10.1117/12.778072
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This paper extends the field of hyperspectral anomaly and target detection by introducing a new approach for preprocessing hyperspectral image data. In this study, we investigate the Median- Spectral-Spatial Transformation as an approach to draw out the sub-pixel difference characterizations of anomalous spectra. By implementing this preprocessing step, we have realized a significant improvement in false alarm reduction with increased probability of detection for sub-pixel targets. Sub-pixel anomalies contain target information consisting of only a small fraction of an image pixel's surface reflected material content. To demonstrate the efficacy of our approach, we compare results from RX anomaly detection across multiple HSI images.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] NON-LOCAL SUB-PIXEL MAPPING FOR HYPERSPECTRAL IMAGERY
    Zhong, Yanfei
    Wu, Yunyun
    Feng, Ruyi
    Xu, Xiong
    Zhang, Liangpei
    [J]. 2015 7TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2015,
  • [42] A Conceptual Framework for the Simultaneous Extraction of Sub-pixel Spatial Extent and Spectral Characteristics of Crops
    Somers, Ben
    Delalieux, Stephanie
    Verstraeten, Willem W.
    Coppin, Pol
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2009, 75 (01): : 57 - 68
  • [43] Hyperspectral Band Selection for Spectral-Spatial Anomaly Detection
    Xie, Weiying
    Li, Yunsong
    Lei, Jie
    Yang, Jian
    Chang, Chein-, I
    Li, Zhen
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3426 - 3436
  • [44] Spectral-Spatial Fusion Sub-Pixel Mapping Based on Deep Neural Network
    He, Da
    Shi, Qian
    Liu, Xiaoping
    Zhong, Yanfei
    Liu, Xiaoding
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [45] Spectral-Spatial Feature Fusion for Hyperspectral Anomaly Detection
    Liu, Shaocong
    Li, Zhen
    Wang, Guangyuan
    Qiu, Xianfei
    Liu, Tinghao
    Cao, Jing
    Zhang, Donghui
    [J]. SENSORS, 2024, 24 (05)
  • [46] Spectral-Spatial Feature Extraction for Hyperspectral Anomaly Detection
    Lei, Jie
    Xie, Weiying
    Yang, Jian
    Li, Yunsong
    Chang, Chein-, I
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (10): : 8131 - 8143
  • [47] Hyperspectral Anomaly Detection Using the Spectral-Spatial Graph
    Tu, Bing
    Wang, Zhi
    Ouyang, Huiting
    Yang, Xianchang
    Li, Jun
    Plaza, Antonio
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [48] SUB-PIXEL MAPPING BASED ON MEMETIC ALGORITHM FOR HYPERSPECTRAL IMAGERY
    Zhang, Yipeng
    Zhong, Yanfei
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 393 - 396
  • [49] UNSUPERVISED CLASSIFICATION AND SPECTRAL UNMIXING FOR SUB-PIXEL LABELLING
    Villa, A.
    Chanussot, J.
    Benediktsson, J. A.
    Jutten, C.
    [J]. 2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 71 - 74
  • [50] Sub-pixel Edge Detection on the Product Line
    Zhu, Xia
    Zhang, Yulin
    [J]. APPLIED MATERIALS AND TECHNOLOGIES FOR MODERN MANUFACTURING, PTS 1-4, 2013, 423-426 : 2526 - 2529