Quantization of Compact Symplectic Manifolds

被引:25
|
作者
Charles, Laurent [1 ]
机构
[1] Univ Paris 06, Sorbonne Univ, Inst Math Jussieu Paris Rive Gauche, UMR 7586, F-75005 Paris, France
关键词
Berezin-Toeplitz operators; Geometric quantization; Symplectic compact manifold; Semiclassical limit; Spin-c Dirac operator; SOMMERFELD-LAGRANGIAN SUBMANIFOLDS; TOEPLITZ-OPERATORS; KAHLER-MANIFOLDS; BERGMAN-KERNEL; LINE BUNDLES; ASYMPTOTICS;
D O I
10.1007/s12220-015-9644-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop the theory of Berezin-Toeplitz operators on any compact symplectic prequantizable manifold from scratch. Our main inspiration is the Boutet de Monvel-Guillemin theory, which we simplify in several ways to obtain a concise exposition. A comparison with the spin-c Dirac quantization is also included.
引用
收藏
页码:2664 / 2710
页数:47
相关论文
共 50 条