ROBUST ESTIMATION OF THE HURST PARAMETER AND SELECTION OF AN ONSET SCALING

被引:1
|
作者
Park, Juhyun [1 ]
Park, Cheolwoo [2 ]
机构
[1] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YF, England
[2] Univ Georgia, Dept Stat, Athens, GA 30602 USA
关键词
Hurst parameter; long-range dependence; non-stationarities; robustness; wavelet spectrum; SELF-SIMILARITY PARAMETER; LONG-RANGE DEPENDENCE; TIME-SERIES; WAVELET; INTERNET; SIZER;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of estimating the Hurst parameter for long-range dependent processes using wavelets. Wavelet techniques have been shown to effectively exploit the asymptotic linear relationship that forms the basis of constructing an estimator. However, it has been noticed that the commonly adopted standard wavelet estimator is vulnerable to various non-stationary phenomena that increasingly occur in practice, and thus leads to unreliable results. In this paper, we propose a new wavelet method for estimating the Hurst parameter that is robust to such non-stationarities as peaks, valleys, and trends. We point out that the new estimator arises as a simple alternative to the standard estimator and does not require an additional correction term that is subject to distributional assumptions. Additionally, we address the issue of selecting scales for the wavelet estimator, which is critical to properly exploiting the asymptotic relationship. We propose a new method based on standard regression diagnostic tools, which is easy to implement, and useful for providing informative goodness-of-fit measures. Several simulated examples are used for illustration and comparison. The proposed method is also applied to the estimation of the Hurst parameter of Internet traffic packet counts data.
引用
收藏
页码:1531 / 1555
页数:25
相关论文
共 50 条
  • [41] GENERALISED M-LASSO FOR ROBUST, SPATIALLY REGULARISED HURST ESTIMATION
    Nelson, J. D. B.
    Nafornita, C.
    Isar, A.
    [J]. 2015 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2015, : 1265 - 1269
  • [42] Parameter selection for a robust tracking signal
    Brence, John R.
    Mastrangelo, Christina M.
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2006, 22 (04) : 493 - 502
  • [43] ROBUST PARAMETER SELECTION FOR PARALLEL TEMPERING
    Hamze, Firas
    Dickson, Neil
    Karimi, Kamran
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2010, 21 (05): : 603 - 615
  • [44] Portfolio Selection with Robust Estimation
    DeMiguel, Victor
    Nogales, Francisco J.
    [J]. OPERATIONS RESEARCH, 2009, 57 (03) : 560 - 577
  • [45] Parameter estimation for operator scaling random fields
    Lim, C. Y.
    Meerschaert, M. M.
    Scheffler, H. -P.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 123 : 172 - 183
  • [46] Heuristic scaling method for efficient parameter estimation
    Yang, Kyung-won
    Lee, Tai-yong
    [J]. CHEMICAL ENGINEERING RESEARCH & DESIGN, 2010, 88 (5-6A): : 520 - 528
  • [47] ROBUST PARAMETER ESTIMATION OF CHAOTIC SYSTEMS
    Springer, Sebastian
    Haario, Heikki
    Shemyakin, Vladimir
    Kalachev, Leonid
    Shchepakin, Denis
    [J]. INVERSE PROBLEMS AND IMAGING, 2019, 13 (06) : 1189 - 1212
  • [48] A robust interactive estimation of the regularization parameter
    Lima, Williams A.
    Silva, Joao B. C.
    Santos, Darciclea F.
    Costa, Jesse C.
    [J]. GEOPHYSICS, 2019, 84 (03) : IM19 - IM33
  • [49] HUBERS ROBUST ESTIMATION OF A LOCATION PARAMETER
    SACKS, J
    YLVISAKER, D
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (04): : 1068 - +
  • [50] Robust parameter estimation for mixture model
    Tadjudin, S
    Landgrebe, DA
    [J]. IGARSS '98 - 1998 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS 1-5: SENSING AND MANAGING THE ENVIRONMENT, 1998, : 1025 - 1027