Critical exponents in mean-field classical spin systems

被引:2
|
作者
Yamaguchi, Yoshiyuki Y. [1 ]
Das, Debraj [2 ]
Gupta, Shamik [2 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Dept Appl Math & Phys, Kyoto 6068501, Japan
[2] Ramakrishna Mission Vivekananda Univ, Dept Phys, Belur Math 711202, Howrah, India
关键词
VLASOV EQUATION; EQUILIBRIUM; STABILITY;
D O I
10.1103/PhysRevE.100.032131
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
For mean-field classical spin systems exhibiting a second-order phase transition in the stationary state, we obtain within the corresponding phase-space evolution according to the Vlasov equation the values of the critical exponents describing power-law behavior of response to a small external field. The exponent values so obtained significantly differ from the ones obtained on the basis of an analysis of the static phase-space distribution, with no reference to dynamics. This work serves as an illustration that cautions against relying on a static approach, with no reference to the dynamical evolution, to extract critical exponent values for mean-field systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Antiferromagnetic mean-field model with unusual precritical exponents
    Ben-Abraham, SI
    Nudelman, A
    [J]. PHYSICAL REVIEW B, 1999, 60 (17) : 11887 - 11890
  • [32] Avalanche shape and exponents beyond mean-field theory
    Dobrinevski, Alexander
    Le Doussal, Pierre
    Wiese, Kay Joerg
    [J]. EPL, 2014, 108 (06)
  • [33] Geometric integration of classical spin dynamics via a mean-field Schrodinger equation
    Dahlbom, David
    Zhang, Hao
    Miles, Cole
    Bai, Xiaojian
    Batista, Cristian D.
    Barros, Kipton
    [J]. PHYSICAL REVIEW B, 2022, 106 (05)
  • [34] Positive-overlap transition and critical exponents in mean field spin glasses
    Agostini, Alessandra
    Barra, Adriano
    De Sanctis, Luca
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2006,
  • [35] Critical and Flash Points for Metastable Systems in a Mean-Field Approach
    A. Delfino
    J. S. Sá Martins
    [J]. International Journal of Thermophysics, 2002, 23 : 949 - 953
  • [36] Critical and flash points for metastable systems in a mean-field approach
    Delfino, A
    Martins, JSS
    [J]. INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2002, 23 (04) : 949 - 953
  • [37] Symmetries of a mean-field spin model
    Paskauskas, Rytis
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (32)
  • [38] On the mean-field spin glass transition
    Barra, A.
    DeSanctis, L.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2008, 64 (01): : 119 - 124
  • [39] OPTIMIZATION OF MEAN-FIELD SPIN GLASSES
    El Alaoui, Ahmed
    Montanari, Andrea
    Sellke, Mark
    [J]. ANNALS OF PROBABILITY, 2021, 49 (06): : 2922 - 2960
  • [40] ULTRAMETRICITY IN MEAN-FIELD SPIN GLASSES
    Bolthausen, Erwin
    [J]. ASTERISQUE, 2015, (367) : 255 - 283