Critical exponents in mean-field classical spin systems

被引:2
|
作者
Yamaguchi, Yoshiyuki Y. [1 ]
Das, Debraj [2 ]
Gupta, Shamik [2 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Dept Appl Math & Phys, Kyoto 6068501, Japan
[2] Ramakrishna Mission Vivekananda Univ, Dept Phys, Belur Math 711202, Howrah, India
关键词
VLASOV EQUATION; EQUILIBRIUM; STABILITY;
D O I
10.1103/PhysRevE.100.032131
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
For mean-field classical spin systems exhibiting a second-order phase transition in the stationary state, we obtain within the corresponding phase-space evolution according to the Vlasov equation the values of the critical exponents describing power-law behavior of response to a small external field. The exponent values so obtained significantly differ from the ones obtained on the basis of an analysis of the static phase-space distribution, with no reference to dynamics. This work serves as an illustration that cautions against relying on a static approach, with no reference to the dynamical evolution, to extract critical exponent values for mean-field systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Correlated cluster mean-field theory for spin systems
    Yamamoto, Daisuke
    [J]. PHYSICAL REVIEW B, 2009, 79 (14)
  • [22] Quantum critical effects in mean-field glassy systems
    Ritort, F
    [J]. PHYSICAL REVIEW B, 1997, 55 (21): : 14096 - 14099
  • [23] MEAN-FIELD THEORY FOR CRITICAL PHENOMENA IN BILAYER SYSTEMS
    HU, X
    KAWAZOE, Y
    [J]. PHYSICAL REVIEW B, 1994, 50 (17): : 12647 - 12658
  • [24] Mean-field approximation for spacing distribution functions in classical systems
    Gonzalez, Diego Luis
    Pimpinelli, Alberto
    Einstein, T. L.
    [J]. PHYSICAL REVIEW E, 2012, 85 (01):
  • [25] Mean-field theory of the transverse-field Ising spin glass in the classical limit
    Li, MS
    Walasek, K
    Cieplak, M
    [J]. PHYSICAL REVIEW B, 1997, 56 (18): : 11715 - 11720
  • [26] MONTE-CARLO MEAN-FIELD METHOD FOR SPIN SYSTEMS
    HENRIQUES, EF
    HENRIQUES, VB
    SALINAS, SR
    [J]. PHYSICAL REVIEW B, 1995, 51 (13) : 8621 - 8623
  • [27] Generalized mean-field description of entanglement in dimerized spin systems
    Boette, A.
    Rossignoli, R.
    Canosa, N.
    Matera, J. M.
    [J]. PHYSICAL REVIEW B, 2015, 91 (06)
  • [28] Gradient flow approach to local mean-field spin systems
    Bashiri, K.
    Bovier, A.
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (03) : 1461 - 1514
  • [29] Critical behavior of mean-field spin glasses on a dilute random graph
    De Sanctis, Luca
    Barra, Adriano
    Folli, Viola
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (21)
  • [30] Antiferromagnetic mean-field model with unusual precritical exponents
    Ben-Abraham, SI
    Nudelman, A
    [J]. PHYSICAL REVIEW B, 1999, 60 (17) : 11887 - 11890