RaptorX: Exploiting structure information for protein alignment by statistical inference

被引:262
|
作者
Peng, Jian [1 ]
Xu, Jinbo [1 ]
机构
[1] Toyota Technol Inst Chicago, Chicago, IL 60637 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
single-template threading; multiple-template threading; alignment quality prediction; probabilistic alignment; multiple protein alignment; CASP; FOLD RECOGNITION; SUBSTITUTION MATRICES; HOMOLOGY DETECTION; SEQUENCE-PROFILE; GENTHREADER;
D O I
10.1002/prot.23175
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This work presents RaptorX, a statistical method for template-based protein modeling that improves alignment accuracy by exploiting structural information in a single or multiple templates. RaptorX consists of three major components: single-template threading, alignment quality prediction, and multiple-template threading. This work summarizes the methods used by RaptorX and presents its CASP9 result analysis, aiming to identify major bottlenecks with RaptorX and template-based modeling and hopefully directions for further study. Our results show that template structural information helps a lot with both single-template and multiple-template protein threading especially when closely-related templates are unavailable, and there is still large room for improvement in both alignment and template selection. The RaptorX web server is available at http://raptorx.uchicago.edu. Proteins 2011; 79(Suppl 10): 161-171. (C) 2011 Wiley-Liss, Inc.
引用
收藏
页码:161 / 171
页数:11
相关论文
共 50 条
  • [21] Statistical Inference of Protein "LEGO Bricks"
    Konagurthu, Arun S.
    Allison, Lloyd
    Abramson, David
    Stuckey, Peter J.
    Lesk, Arthur M.
    [J]. 2013 IEEE 13TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2013, : 1091 - 1096
  • [22] Seq-SetNet: directly exploiting multiple sequence alignment for protein secondary structure prediction
    Ju, Fusong
    Zhu, Jianwei
    Zhang, Qi
    Wei, Guozheng
    Sun, Shiwei
    Zheng, Wei-Mou
    Bu, Dongbo
    [J]. BIOINFORMATICS, 2022, 38 (04) : 990 - 996
  • [23] Statistical inference in queueing networks with probing information
    Antunes, Nelson
    Jacinto, Goncalo
    Pacheco, Antonio
    [J]. QUEUEING SYSTEMS, 2022, 100 (3-4) : 493 - 495
  • [24] STATISTICAL-INFERENCE WITH PARTIAL PRIOR INFORMATION
    POTTER, JM
    ANDERSON, BDO
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1983, 29 (05) : 688 - 695
  • [25] INFERENCE CONTROL IN STATISTICAL DATABASES WITH INCOMPLETE INFORMATION
    MICHALEWICZ, Z
    [J]. INFORMATION SYSTEMS, 1983, 8 (03) : 177 - 185
  • [26] Statistical inference in queueing networks with probing information
    Nelson Antunes
    Gonçalo Jacinto
    António Pacheco
    [J]. Queueing Systems, 2022, 100 : 493 - 495
  • [27] SOME INFORMATION THEORY ASPECTS OF STATISTICAL INFERENCE
    PAPAIOAN.T
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (03): : 1140 - &
  • [28] Greedy inference with structure-exploiting lazy maps
    Brennan, Michael C.
    Bigoni, Daniele
    Zahm, Olivier
    Spantini, Alessio
    Marzouk, Youssef
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [29] Exploiting latent semantic information in statistical language modeling
    Bellegarda, JR
    [J]. PROCEEDINGS OF THE IEEE, 2000, 88 (08) : 1279 - 1296
  • [30] Bridging the gaps in statistical models of protein alignment
    Sumanaweera, Dinithi
    Allison, Lloyd
    Konagurthu, Arun S.
    [J]. BIOINFORMATICS, 2022, 38 (SUPPL 1) : 229 - 237