Greedy inference with structure-exploiting lazy maps

被引:0
|
作者
Brennan, Michael C. [1 ]
Bigoni, Daniele [1 ]
Zahm, Olivier [2 ]
Spantini, Alessio [1 ]
Marzouk, Youssef [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
[2] Univ Grenoble Alpes, INRIA, CNRS, LJK, F-38000 Grenoble, France
关键词
MCMC; ALGORITHMS; QUADRATURE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a framework for solving high-dimensional Bayesian inference problems using structure-exploiting low-dimensional transport maps or flows. These maps are confined to a low-dimensional subspace (hence, lazy), and the subspace is identified by minimizing an upper bound on the Kullback-Leibler divergence (hence, structured). Our framework provides a principled way of identifying and exploiting low-dimensional structure in an inference problem. It focuses the expressiveness of a transport map along the directions of most significant discrepancy from the posterior, and can be used to build deep compositions of lazy maps, where low-dimensional projections of the parameters are iteratively transformed to match the posterior. We prove weak convergence of the generated sequence of distributions to the posterior, and we demonstrate the benefits of the framework on challenging inference problems in machine learning and differential equations, using inverse autoregressive flows and polynomial maps as examples of the underlying density estimators.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] STRUCTURE-EXPLOITING VARIATIONAL INFERENCE FOR RECURRENT SWITCHING LINEAR DYNAMICAL SYSTEMS
    Linderman, Scott W.
    Johnson, Matthew J.
    2017 IEEE 7TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2017,
  • [2] A STRUCTURE-EXPLOITING ALGORITHM FOR NONLINEAR MINIMAX PROBLEMS
    Conn, Andrew R.
    Li, Yuying
    SIAM JOURNAL ON OPTIMIZATION, 1992, 2 (02) : 242 - 263
  • [3] A structure-exploiting tool in algebraic modeling languages
    Fragnière, E
    Gondzio, J
    Sarkissian, R
    Vial, JP
    MANAGEMENT SCIENCE, 2000, 46 (08) : 1145 - 1158
  • [4] Structure-Exploiting Discriminative Ordinal Multioutput Regression
    Tian, Qing
    Cao, Meng
    Chen, Songcan
    Yin, Hujun
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (01) : 266 - 280
  • [5] Lazy and Fast Greedy MAP Inference for Determinantal Point Process
    Hemmi, Shinichi
    Oki, Taihei
    Sakaue, Shinsaku
    Fujii, Kaito
    Iwata, Satoru
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [6] MNC: Structure-Exploiting Sparsity Estimation for Matrix Expressions
    Sommer, Johanna
    Boehm, Matthias
    Evfimievski, Alexandre V.
    Reinwald, Berthold
    Haas, Peter J.
    SIGMOD '19: PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2019, : 1607 - 1623
  • [7] GBOML: a structure-exploiting optimization modelling language in Python']Python
    Miftari, Bardhyl
    Berger, Mathias
    Derval, Guillaume
    Louveaux, Quentin
    Ernst, Damien
    OPTIMIZATION METHODS & SOFTWARE, 2023, 39 (01): : 227 - 256
  • [8] Exploiting Semantics in Bayesian Network Inference Using Lazy Propagation
    Madsen, Anders L.
    Butz, Cory J.
    ADVANCES IN ARTIFICIAL INTELLIGENCE (AI 2015), 2015, 9091 : 3 - 15
  • [9] A novel structure-exploiting encoding for SAT-based diagnosis
    Siddiqi, Sajjad Ahmed
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2024, 36 (06) : 939 - 952
  • [10] Structure-exploiting Newton-type method for optimal control of switched systems
    Katayama, Sotaro
    Ohtsuka, Toshiyuki
    INTERNATIONAL JOURNAL OF CONTROL, 2024, 97 (08) : 1717 - 1733