On the Well-Posedness and Blow-Up for a Semilinear Biparabolic Equation

被引:3
|
作者
Vo Van Au [1 ,2 ]
Zhou, Yong [3 ,4 ]
O'Regan, Donal [5 ]
机构
[1] Van Lang Univ, Sci & Technol Adv Inst, Div Appl Math, Ho Chi Minh City, Vietnam
[2] Van Lang Univ, Fac Technol, Ho Chi Minh City, Vietnam
[3] Xiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[4] King Abdulaziz Univ, Fac Sci, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah 21589, Saudi Arabia
[5] Natl Univ Ireland, Sch Math & Stat Sci, Galway, Ireland
关键词
Well-posedness; nonlinear problem; biparabolic equation; blow-up; NONLINEAR PARABOLIC EQUATIONS; ASYMPTOTIC-BEHAVIOR; MODEL;
D O I
10.1007/s00009-021-01970-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Cauchy problem for a semilinear biparabolic equation (partial derivative t + A)(2)u = G(x,t;u), x is an element of Omega, t >= 0. Results of the local well-posedness (local existence, regularity, and continuous dependence) are given when G is globally Lipschitz. Also, the existence for large times (continuation) of the solutions and a finite time blow-up results are proposed when G is locally Lipschitz functions.
引用
收藏
页数:23
相关论文
共 50 条