Blow-up phenomena and the local well-posedness and ill-posedness of the generalized Camassa–Holm equation in critical Besov spaces

被引:0
|
作者
Zhiying Meng
Zhaoyang Yin
机构
[1] Sun Yat-sen University,Department of Mathematics
[2] Macau University of Science and Technology,Faculty of Information Technology
来源
关键词
A generalized Camassa–Holm equation; Local well-posedness; Blow-up; Ill-posedness; 35Q53; 35B10; 35B65; 35C05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first establish the local well-posednesss for the Cauchy problem of a generalized Camassa–Holm (gCH) equation in Besov spaces Bp,11+1p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^{1+\frac{1}{p}}_{p,1}$$\end{document} with 1≤p<+∞.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le p<+\infty .$$\end{document} Then we gain two blow-up criterions, and present two new blow-up results. Finally, we prove the ill-posedness of the gCH equation in critical Besov spaces B2,r32,r∈(1,+∞].\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^{\frac{3}{2}}_{2,r},~r\in (1,+\infty ].$$\end{document}
引用
收藏
页码:933 / 954
页数:21
相关论文
共 50 条