Sharp ill-posedness for the generalized Camassa–Holm equation in Besov spaces

被引:0
|
作者
Jinlu Li
Yanghai Yu
Weipeng Zhu
机构
[1] Gannan Normal University,School of Mathematics and Computer Sciences
[2] Anhui Normal University,School of Mathematics and Statistics
[3] Foshan University,School of Mathematics and Big Data
来源
关键词
Generalized Camassa–Holm equation; Ill-posedness; Besov space; 35Q53; 37K10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the Cauchy problem for the generalized Camassa–Holm equation that containing, as its members, three integrable equations: the Camassa–Holm equation, the Degasperis–Procesi equation and the Novikov equation. We present a new and unified method to prove the sharp ill-posedness for the generalized Camassa–Holm equation in Bp,∞s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^s_{p,\infty }$$\end{document} with s>max{1+1/p,3/2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>\max \{1+1/p, 3/2\}$$\end{document} and 1≤p≤∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le p\le \infty $$\end{document} in the sense that the solution map to this equation starting from u0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0$$\end{document} is discontinuous at t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t = 0$$\end{document} in the metric of Bp,∞s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^s_{p,\infty }$$\end{document}. Our result covers and improves the previous work given in Li et al. (J Differ Equ 306:403–417, 2022), solving an open problem left in Li et al. (2022).
引用
收藏
相关论文
共 50 条
  • [1] Sharp ill-posedness for the generalized Camassa-Holm equation in Besov spaces
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (01)
  • [2] Ill-posedness for the Camassa-Holm and related equations in Besov spaces
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 306 : 403 - 417
  • [3] Blow-up phenomena and the local well-posedness and ill-posedness of the generalized Camassa–Holm equation in critical Besov spaces
    Zhiying Meng
    Zhaoyang Yin
    [J]. Monatshefte für Mathematik, 2023, 200 : 933 - 954
  • [4] Ill-posedness for a generalized Camassa–Holm equation with higher-order nonlinearity in the critical Besov space
    Wei Deng
    Min Li
    Xing Wu
    Weipeng Zhu
    [J]. Monatshefte für Mathematik, 2024, 203 : 843 - 857
  • [5] Blow-up phenomena and the local well-posedness and ill-posedness of the generalized Camassa-Holm equation in critical Besov spaces
    Meng, Zhiying
    Yin, Zhaoyang
    [J]. MONATSHEFTE FUR MATHEMATIK, 2023, 200 (04): : 933 - 954
  • [6] Ill-posedness for a generalized Camassa-Holm equation with higher-order nonlinearity in the critical Besov space
    Deng, Wei
    Li, Min
    Wu, Xing
    Zhu, Weipeng
    [J]. MONATSHEFTE FUR MATHEMATIK, 2024, 203 (04): : 843 - 857
  • [7] SHARP WELL-POSEDNESS AND ILL-POSEDNESS OF A HIGHER-ORDER MODIFIED CAMASSA-HOLM EQUATION
    Yan, Wei
    Li, Yongsheng
    Li, Shiming
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2012, 25 (11-12) : 1053 - 1074
  • [8] Well-posedness of the modified Camassa–Holm equation in Besov spaces
    Hao Tang
    Zhengrong Liu
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 1559 - 1580
  • [9] Ill-posedness for the gCH-mCH equation in Besov spaces
    Yu, Yanghai
    Wang, Hui
    [J]. MONATSHEFTE FUR MATHEMATIK, 2024,
  • [10] Spiked traveling waves and ill-posedness for the Camassa-Holm equation on the circle
    Byers, P
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2004, 48 (03) : 1031 - 1040