METACLUSTER-an R package for context-specific expression analysis of metabolic gene clusters

被引:14
|
作者
Banf, Michael [1 ,2 ]
Zhao, Kangmei [1 ]
Rhee, Seung Y. [1 ]
机构
[1] Carnegie Inst Sci, Dept Plant Biol, Stanford, CA 93405 USA
[2] EducatedGuess Ai, Siegen, Germany
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
DIVERSIFICATION; IDENTIFICATION; COEXPRESSION;
D O I
10.1093/bioinformatics/btz021
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The Summary: Plants and microbes produce numerous compounds to cope with their environments but the biosynthetic pathways for most of these compounds have yet to be elucidated. Some biosynthetic pathways are encoded by enzymes collocated in the chromosome. To facilitate a more comprehensive condition and tissue-specific expression analysis of metabolic gene clusters, we developed METACLUSTER, a probabilistic framework for characterizing metabolic gene clusters using context-specific gene expression information.
引用
收藏
页码:3178 / 3180
页数:3
相关论文
共 50 条
  • [21] DepthTools: an R package for a robust analysis of gene expression data
    Torrente, Aurora
    Lopez-Pintado, Sara
    Romo, Juan
    [J]. BMC BIOINFORMATICS, 2013, 14
  • [22] DepthTools: an R package for a robust analysis of gene expression data
    Aurora Torrente
    Sara López-Pintado
    Juan Romo
    [J]. BMC Bioinformatics, 14
  • [23] Identifying Context-Specific Transcription Factor Targets From Prior Knowledge and Gene Expression Data
    Fertig, Elana J.
    Favorov, Alexander V.
    Ochs, Michael F.
    [J]. IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2013, 12 (03) : 142 - 149
  • [24] Context-specific infinite mixtures for clustering gene expression profiles across diverse microarray dataset
    Liu, X.
    Sivaganesan, S.
    Yeung, K. Y.
    Guo, J.
    Bumgarner, R. E.
    Medvedovic, Mario
    [J]. BIOINFORMATICS, 2006, 22 (14) : 1737 - 1744
  • [25] Novel Drivers of Virulence in Clostridioides difficile Identified via Context-Specific Metabolic Network Analysis
    Jenior, Matthew L.
    Leslie, Jhansi L.
    Powers, Deborah A.
    Garrett, Elizabeth M.
    Walker, Kimberly A.
    Dickenson, Mary E.
    Petri, William A., Jr.
    Tamayo, Rita
    Papin, Jason A.
    [J]. MSYSTEMS, 2021, 6 (05)
  • [26] Exploring the Metabolic Heterogeneity of Cancers: A Benchmark Study of Context-Specific Models
    Jalili, Mahdi
    Scharm, Martin
    Wolkenhauer, Olaf
    Damaghi, Mehdi
    Salehzadeh-Yazdi, Ali
    [J]. JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (06):
  • [27] StanDep: Capturing transcriptomic variability improves context-specific metabolic models
    Joshi, Chintan J.
    Schinn, Song-Min
    Richelle, Anne
    Shamie, Isaac
    O'Rourke, Eyleen J.
    Lewis, Nathan E.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (05)
  • [28] Troppo - A Python']Python Framework for the Reconstruction of Context-Specific Metabolic Models
    Ferreira, Jorge
    Vieira, Vitor
    Gomes, Jorge
    Correia, Sara
    Rocha, Miguel
    [J]. PRACTICAL APPLICATIONS OF COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2020, 1005 : 146 - 153
  • [29] Assembling cell context-specific gene sets: a case in cardiomyopathy
    Liu, Mingming
    King, Vanessa
    Lim, Wei Keat
    [J]. JOURNAL OF INTEGRATIVE BIOINFORMATICS, 2013, 10 (01)
  • [30] Data integration for inferring context-specific gene regulatory networks
    Baur, Brittany
    Shin, Junha
    Zhang, Shilu
    Roy, Sushmita
    [J]. CURRENT OPINION IN SYSTEMS BIOLOGY, 2020, 23 : 38 - 46