DepthTools: an R package for a robust analysis of gene expression data

被引:7
|
作者
Torrente, Aurora [1 ,2 ]
Lopez-Pintado, Sara [3 ,4 ]
Romo, Juan [5 ]
机构
[1] European Bioinformat Inst EMBL EBI, European Mol Biol Lab, Funct Genom Team, Hinxton CB10 1SD, England
[2] Univ Carlos III Madrid, Dept Ciencia & Ingn Mat & Ingn Quim, Leganes 28911, Spain
[3] Columbia Univ, Mailman Sch Publ Hlth, New York, NY 10032 USA
[4] Univ Pablo de Olavide, Dept Econ Metodos Cuantitat & Hist Econ, Seville 41013, Spain
[5] Univ Carlos III Madrid, Dept Estadist, E-28903 Getafe, Spain
来源
BMC BIOINFORMATICS | 2013年 / 14卷
关键词
Data depth; Robustness; R package; R commander plug-in; CANCER; CLASSIFICATION; PREDICTION;
D O I
10.1186/1471-2105-14-237
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: The use of DNA microarrays and oligonucleotide chips of high density in modern biomedical research provides complex, high dimensional data which have been proven to convey crucial information about gene expression levels and to play an important role in disease diagnosis. Therefore, there is a need for developing new, robust statistical techniques to analyze these data. Results: depthTools is an R package for a robust statistical analysis of gene expression data, based on an efficient implementation of a feasible notion of depth, the Modified Band Depth. This software includes several visualization and inference tools successfully applied to high dimensional gene expression data. A user-friendly interface is also provided via an R-commander plugin. Conclusion: We illustrate the utility of the depthTools package, that could be used, for instance, to achieve a better understanding of genome-level variation between tumors and to facilitate the development of personalized treatments.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] DepthTools: an R package for a robust analysis of gene expression data
    Aurora Torrente
    Sara López-Pintado
    Juan Romo
    [J]. BMC Bioinformatics, 14
  • [2] tigeR: Tumor immunotherapy gene expression data analysis R package
    Chen, Yihao
    He, Li-Na
    Zhang, Yuanzhe
    Gong, Jingru
    Xu, Shuangbin
    Shu, Yuelong
    Zhang, Di
    Yu, Guangchuang
    Zuo, Zhixiang
    [J]. IMETA, 2024,
  • [3] MADE4:: an R package for multivariate analysis of gene expression data
    Culhane, AC
    Thioulouse, J
    Perrière, G
    Higgins, DG
    [J]. BIOINFORMATICS, 2005, 21 (11) : 2789 - 2790
  • [4] DBComposer: AN R PACKAGE FOR INTEGRATIVE ANALYSIS AND MANAGEMENT OF GENE EXPRESSION MICROARRAY DATA
    Kong, Lingjia
    Aho, Kaisa-Leena
    Granberg, Kirsi
    Roos, Christophe
    Autio, Reija
    [J]. 2013 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS 2013), 2013, : 92 - 93
  • [5] GEInter: an R package for robust gene-environment interaction analysis
    Wu, Mengyun
    Qin, Xing
    Ma, Shuangge
    [J]. BIOINFORMATICS, 2021, 37 (20) : 3691 - 3692
  • [6] GOexpress: an R/Bioconductor package for the identification and visualisation of robust gene ontology signatures through supervised learning of gene expression data
    Kévin Rue-Albrecht
    Paul A. McGettigan
    Belinda Hernández
    Nicolas C. Nalpas
    David A. Magee
    Andrew C. Parnell
    Stephen V. Gordon
    David E. MacHugh
    [J]. BMC Bioinformatics, 17
  • [7] GOexpress: an R/Bioconductor package for the identification and visualisation of robust gene ontology signatures through supervised learning of gene expression data
    Rue-Albrecht, Kevin
    McGettigan, Paul A.
    Hernandez, Belinda
    Nalpas, Nicolas C.
    Magee, David A.
    Parnell, Andrew C.
    Gordon, Stephen V.
    MacHugh, David E.
    [J]. BMC BIOINFORMATICS, 2016, 17
  • [8] Codelink: an R package for analysis of GE healthcare gene expression bioarrays
    Diez, Diego
    Alvarez, Rebeca
    Dopazo, Ana
    [J]. BIOINFORMATICS, 2007, 23 (09) : 1168 - 1169
  • [9] NormExpression: An R Package to Normalize Gene Expression Data Using Evaluated Methods
    Wu, Zhenfeng
    Liu, Weixiang
    Jin, Xiufeng
    Ji, Haishuo
    Wang, Hua
    Glusman, Gustavo
    Robinson, Max
    Liu, Lin
    Ruan, Jishou
    Gao, Shan
    [J]. FRONTIERS IN GENETICS, 2019, 10
  • [10] edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    Robinson, Mark D.
    McCarthy, Davis J.
    Smyth, Gordon K.
    [J]. BIOINFORMATICS, 2010, 26 (01) : 139 - 140