DepthTools: an R package for a robust analysis of gene expression data

被引:7
|
作者
Torrente, Aurora [1 ,2 ]
Lopez-Pintado, Sara [3 ,4 ]
Romo, Juan [5 ]
机构
[1] European Bioinformat Inst EMBL EBI, European Mol Biol Lab, Funct Genom Team, Hinxton CB10 1SD, England
[2] Univ Carlos III Madrid, Dept Ciencia & Ingn Mat & Ingn Quim, Leganes 28911, Spain
[3] Columbia Univ, Mailman Sch Publ Hlth, New York, NY 10032 USA
[4] Univ Pablo de Olavide, Dept Econ Metodos Cuantitat & Hist Econ, Seville 41013, Spain
[5] Univ Carlos III Madrid, Dept Estadist, E-28903 Getafe, Spain
来源
BMC BIOINFORMATICS | 2013年 / 14卷
关键词
Data depth; Robustness; R package; R commander plug-in; CANCER; CLASSIFICATION; PREDICTION;
D O I
10.1186/1471-2105-14-237
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: The use of DNA microarrays and oligonucleotide chips of high density in modern biomedical research provides complex, high dimensional data which have been proven to convey crucial information about gene expression levels and to play an important role in disease diagnosis. Therefore, there is a need for developing new, robust statistical techniques to analyze these data. Results: depthTools is an R package for a robust statistical analysis of gene expression data, based on an efficient implementation of a feasible notion of depth, the Modified Band Depth. This software includes several visualization and inference tools successfully applied to high dimensional gene expression data. A user-friendly interface is also provided via an R-commander plugin. Conclusion: We illustrate the utility of the depthTools package, that could be used, for instance, to achieve a better understanding of genome-level variation between tumors and to facilitate the development of personalized treatments.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] QUBIC: a bioconductor package for qualitative biclustering analysis of gene co-expression data
    Zhang, Yu
    Xie, Juan
    Yang, Jinyu
    Fennell, Anne
    Zhang, Chi
    Ma, Qin
    [J]. BIOINFORMATICS, 2017, 33 (03) : 450 - 452
  • [42] DCGL: an R package for identifying differentially coexpressed genes and links from gene expression microarray data
    Liu, Bao-Hong
    Yu, Hui
    Tu, Kang
    Li, Chun
    Li, Yi-Xue
    Li, Yuan-Yuan
    [J]. BIOINFORMATICS, 2010, 26 (20) : 2637 - 2638
  • [43] GSAR: Bioconductor package for Gene Set analysis in R
    Yasir Rahmatallah
    Boris Zybailov
    Frank Emmert-Streib
    Galina Glazko
    [J]. BMC Bioinformatics, 18
  • [44] MAVTgsa: An R Package for Gene Set (Enrichment) Analysis
    Chien, Chih-Yi
    Chang, Ching-Wei
    Tsai, Chen-An
    Chen, James J.
    [J]. BIOMED RESEARCH INTERNATIONAL, 2014, 2014
  • [45] GSAR: Bioconductor package for Gene Set analysis in R
    Rahmatallah, Yasir
    Zybailov, Boris
    Emmert-Streib, Frank
    Glazko, Galina
    [J]. BMC BIOINFORMATICS, 2017, 18
  • [46] METACLUSTER-an R package for context-specific expression analysis of metabolic gene clusters
    Banf, Michael
    Zhao, Kangmei
    Rhee, Seung Y.
    [J]. BIOINFORMATICS, 2019, 35 (17) : 3178 - 3180
  • [47] DEvis: an R package for aggregation and visualization of differential expression data
    Adam Price
    Adrian Caciula
    Cheng Guo
    Bohyun Lee
    Juliet Morrison
    Angela Rasmussen
    W. Ian Lipkin
    Komal Jain
    [J]. BMC Bioinformatics, 20
  • [48] DEvis: an R package for aggregation and visualization of differential expression data
    Price, Adam
    Caciula, Adrian
    Guo, Cheng
    Lee, Bohyun
    Morrison, Juliet
    Rasmussen, Angela
    Lipkin, W. Ian
    Jain, Komal
    [J]. BMC BIOINFORMATICS, 2019, 20 (1)
  • [49] Rchimerism An R Package for Automated Chimerism Data Analysis
    Siddiqui, Zohair
    Maldonado, Juan
    Grojean, Jeremy
    Ye, Fei
    Zhang, David
    Longtine, Janina
    Ahn, Tae-Hyuk
    Guo, Huazhang
    [J]. JOURNAL OF MOLECULAR DIAGNOSTICS, 2020, 22 (01): : 21 - 29
  • [50] stab: An R package for drug stability data analysis
    Lee, Hsin-ya
    Wu, Pao- chu
    Lee, Yung-jin
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2010, 100 (02) : 140 - 148