DepthTools: an R package for a robust analysis of gene expression data

被引:7
|
作者
Torrente, Aurora [1 ,2 ]
Lopez-Pintado, Sara [3 ,4 ]
Romo, Juan [5 ]
机构
[1] European Bioinformat Inst EMBL EBI, European Mol Biol Lab, Funct Genom Team, Hinxton CB10 1SD, England
[2] Univ Carlos III Madrid, Dept Ciencia & Ingn Mat & Ingn Quim, Leganes 28911, Spain
[3] Columbia Univ, Mailman Sch Publ Hlth, New York, NY 10032 USA
[4] Univ Pablo de Olavide, Dept Econ Metodos Cuantitat & Hist Econ, Seville 41013, Spain
[5] Univ Carlos III Madrid, Dept Estadist, E-28903 Getafe, Spain
来源
BMC BIOINFORMATICS | 2013年 / 14卷
关键词
Data depth; Robustness; R package; R commander plug-in; CANCER; CLASSIFICATION; PREDICTION;
D O I
10.1186/1471-2105-14-237
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: The use of DNA microarrays and oligonucleotide chips of high density in modern biomedical research provides complex, high dimensional data which have been proven to convey crucial information about gene expression levels and to play an important role in disease diagnosis. Therefore, there is a need for developing new, robust statistical techniques to analyze these data. Results: depthTools is an R package for a robust statistical analysis of gene expression data, based on an efficient implementation of a feasible notion of depth, the Modified Band Depth. This software includes several visualization and inference tools successfully applied to high dimensional gene expression data. A user-friendly interface is also provided via an R-commander plugin. Conclusion: We illustrate the utility of the depthTools package, that could be used, for instance, to achieve a better understanding of genome-level variation between tumors and to facilitate the development of personalized treatments.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] FungiExpresZ: an intuitive package for fungal gene expression data analysis, visualization and discovery
    Parsania, Chirag
    Chen, Ruiwen
    Sethiya, Pooja
    Miao, Zhengqiang
    Dong, Liguo
    Wong, Koon Ho
    [J]. BRIEFINGS IN BIOINFORMATICS, 2023, 24 (02)
  • [22] SScore:: an R package for detecting differential gene expression without gene expression summaries
    Kennedy, RE
    Kerns, RT
    Kong, XR
    Archer, KJ
    Miles, MF
    [J]. BIOINFORMATICS, 2006, 22 (10) : 1272 - 1274
  • [23] CAFE: an R package for the detection of gross chromosomal abnormalities from gene expression microarray data
    Bollen, Sander
    Leddin, Mathias
    Andrade-Navarro, Miguel A.
    Mah, Nancy
    [J]. BIOINFORMATICS, 2014, 30 (10) : 1484 - 1485
  • [24] DExMA: An R Package for Performing Gene Expression Meta-Analysis with Missing Genes
    Antonio Villatoro-Garcia, Juan
    Martorell-Marugan, Jordi
    Toro-Dominguez, Daniel
    Roman-Montoya, Yolanda
    Femia, Pedro
    Carmona-Saez, Pedro
    [J]. MATHEMATICS, 2022, 10 (18)
  • [25] Hyperspectral Data Analysis in R: The hsdar Package
    Lehnert, Lukas W.
    Meyer, Hanna
    Obermeier, Wolfgang A.
    Silva, Brenner
    Regeling, Bianca
    Thies, Boris
    Bendix, Jorg
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2019, 89 (12):
  • [26] An R package for divergence analysis of omics data
    Dinalankara, Wikum
    Ke, Qian
    Geman, Donald
    Marchionni, Luigi
    [J]. PLOS ONE, 2021, 16 (04):
  • [27] An R package for the forward analysis of multivariate data
    Corbellini, Aldo
    Konis, Kjell
    [J]. DATA ANALYSIS, CLASSIFICATION AND THE FORWARD SEARCH, 2006, : 189 - 197
  • [28] Compositional data analysis with 'R' and the package 'compositions'
    Van der Boogaart, K. G.
    Tolosana-Delgado, R.
    [J]. COMPOSITIONAL DATA ANALYSIS IN THE GEOSCIENCES: FROM THEORY TO PRACTICE, 2006, 264 : 119 - +
  • [29] Anthropometry: An R Package for Analysis of Anthropometric Data
    Vinue, Guillermo
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2017, 77 (06): : 1 - 39
  • [30] GENLIB: an R package for the analysis of genealogical data
    Gauvin, Heloise
    Lefebvre, Jean-Francois
    Moreau, Claudia
    Lavoie, Eve-Marie
    Labuda, Damian
    Vezina, Helene
    Roy-Gagnon, Marie-Helene
    [J]. BMC BIOINFORMATICS, 2015, 16