A weighted eigenvalue problem of the biased infinity Laplacian*

被引:3
|
作者
Liu, Fang [1 ]
Yang, Xiao-Ping [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Sci, Dept Math, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
biased infinity Laplacian; viscosity solution; principal eigenvalue; comparison principle; Harnack inequality; Lipschitz regularity;
D O I
10.1088/1361-6544/abd85d
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a weighted eigenvalue problem of the beta-biased infinity Laplacian operator arising from the beta-biased tug-of-war. We characterize the principal eigenvalue by the comparison principle and show that beta-biased infinity Laplacian operator possesses two principal eigenvalues, corresponding to a positive and a negative principal eigenfunction. When a parameter is less than the principal eigenvalue, certain existence and uniqueness results of the inhomogeneous equations related to this problem are established. As an application, we obtain the decay estimates for viscosity solutions of the parabolic problem associated to the beta-biased infinity Laplacian. In the process, we also establish the Lipschitz regularity and Harnack inequality by barrier method.
引用
收藏
页码:1197 / 1237
页数:41
相关论文
共 50 条
  • [31] BERNOULLI FREE BOUNDARY PROBLEM FOR THE INFINITY LAPLACIAN
    Crasta, Graziano
    Fragala, Ilaria
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (01) : 821 - 844
  • [32] Eigenvalue problem for the laplacian equations (vol 27)
    Hong, Jiaxing
    ACTA MATHEMATICA SCIENTIA, 2007, 27 (04) : 908 - 908
  • [33] On the p(x)-Laplacian Robin eigenvalue problem
    Deng, Shao-Gao
    Wang, Qin
    Cheng, Shijuan
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) : 5643 - 5649
  • [34] Eigenvalue Problem For Perturbated p-Laplacian
    Latifi, Mehdi
    Alimohammady, Mohsen
    THAI JOURNAL OF MATHEMATICS, 2022, 20 (01): : 35 - 54
  • [35] On an eigenvalue problem associated with the (p, q) - Laplacian
    Barbu, Luminita
    Burlacu, Andreea
    Morosanu, Gheorghe
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2024, 32 (01): : 45 - 64
  • [36] Eigenvalue inequalities for the buckling problem of the drifting Laplacian
    Qi, Xuerong
    Wang, Zhaoxia
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (02) : 840 - 852
  • [37] An eigenvalue problem for the Dirichlet (p, q)-Laplacian
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (07) : 1214 - 1223
  • [38] An eigenvalue optimization problem for the p-Laplacian
    Chorwadwala, Anisa M. H.
    Mahadevan, Rajesh
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2015, 145 (06) : 1145 - 1151
  • [39] The upper bound for the largest signless Laplacian eigenvalue of weighted graphs
    Gazi University, Departments Mathematic, Teknikokullar
    Ankara
    06500, Turkey
    不详
    Ankara
    06500, Turkey
    GU J. Sci., 4 (709-714):
  • [40] A sharp upper bound on the largest Laplacian eigenvalue of weighted graphs
    Das, KC
    Bapat, RB
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 409 : 153 - 165