A weighted eigenvalue problem of the biased infinity Laplacian*

被引:3
|
作者
Liu, Fang [1 ]
Yang, Xiao-Ping [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Sci, Dept Math, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
biased infinity Laplacian; viscosity solution; principal eigenvalue; comparison principle; Harnack inequality; Lipschitz regularity;
D O I
10.1088/1361-6544/abd85d
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a weighted eigenvalue problem of the beta-biased infinity Laplacian operator arising from the beta-biased tug-of-war. We characterize the principal eigenvalue by the comparison principle and show that beta-biased infinity Laplacian operator possesses two principal eigenvalues, corresponding to a positive and a negative principal eigenfunction. When a parameter is less than the principal eigenvalue, certain existence and uniqueness results of the inhomogeneous equations related to this problem are established. As an application, we obtain the decay estimates for viscosity solutions of the parabolic problem associated to the beta-biased infinity Laplacian. In the process, we also establish the Lipschitz regularity and Harnack inequality by barrier method.
引用
收藏
页码:1197 / 1237
页数:41
相关论文
共 50 条
  • [21] Biased tug-of-war, the biased infinity Laplacian, and comparison with exponential cones
    Peres, Yuval
    Pete, Gabor
    Somersille, Stephanie
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 38 (3-4) : 541 - 564
  • [22] Parabolic Biased Infinity Laplacian Equation Related to the Biased Tug-of-War
    Liu, Fang
    Jiang, Feida
    ADVANCED NONLINEAR STUDIES, 2019, 19 (01) : 89 - 112
  • [23] Biased tug-of-war, the biased infinity Laplacian, and comparison with exponential cones
    Yuval Peres
    Gábor Pete
    Stephanie Somersille
    Calculus of Variations and Partial Differential Equations, 2010, 38 : 541 - 564
  • [24] Eigenvalue estimate for the weighted p-Laplacian
    Lin Feng Wang
    Annali di Matematica Pura ed Applicata, 2012, 191 : 539 - 550
  • [25] The obstacle problem for the infinity fractional laplacian
    Moreno Mérida L.
    Vidal R.E.
    Rendiconti del Circolo Matematico di Palermo Series 2, 2018, 67 (1): : 7 - 15
  • [26] Eigenvalue estimates for the weighted Laplacian on metric trees
    Naimark, K
    Solomyak, M
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2000, 80 : 690 - 724
  • [27] Eigenvalue estimate for the weighted p-Laplacian
    Wang, Lin Feng
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2012, 191 (03) : 539 - 550
  • [28] Eigenvalue problem for fractional Kirchhoff Laplacian
    Tyagi, J.
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2018, 29 (01) : 195 - 203
  • [29] On a weighted anisotropic eigenvalue problem
    Gavitone, Nunzia
    Sannipoli, Rossano
    GLASGOW MATHEMATICAL JOURNAL, 2025, 67 (01) : 72 - 85
  • [30] Eigenvalue problems and their perturbations for the weighted (p, q)-Laplacian
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 101