Cylindrical type integrable classical systems in a magnetic field

被引:11
|
作者
Fournier, F. [1 ]
Snobl, L. [2 ]
Winternitz, P. [3 ,4 ]
机构
[1] Univ Montreal, Dept Phys, Fac Arts & Sci, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
[2] Czech Tech Univ, Dept Phys, Fac Nucl Sci & Phys Engn, Brehova 7, Prague 11519 1, Czech Republic
[3] Univ Montreal, Ctr Rech Math, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
[4] Univ Montreal, Dept Math & Stat, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
integrability; superintegrability; classical mechanics; magnetic field; HAMILTONIAN-SYSTEMS; EXACT SOLVABILITY; SUPERINTEGRABLE SYSTEMS; QUADRATIC HAMILTONIANS; 3RD-ORDER INTEGRALS; QUANTUM; SYMMETRIES; LAME;
D O I
10.1088/1751-8121/ab64a6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present all second order classical integrable systems of the cylindrical type in a three dimensional Euclidean space E-3 with a nontrivial magnetic field. The Hamiltonian and integrals of motion have the form H = 1/2 ((p) over right arrow + (A) triple over dot((x) over right arrow))2 + W((x) over right arrow), X-1 = (p(phi)(A))(2) + s(1)(r)(r, phi, Z) p(r)(A) + S-1(phi)(r, phi, Z) p(phi)(A) + s(1)(Z)(r, phi, Z) p(Z)(A) + m(1)(r, phi, Z), X-2 = (p(Z)(A))(2) + s(2)(r)(r, phi, Z) p(r)(A) + S-2(phi)(r, phi, Z) p(phi)(A) + s(2)(Z)(r, phi, Z) p(Z)(A) + m(2)(r, phi, Z), Infinite families of such systems are found, in general depending on arbitrary functions or parameters. This leaves open the possibility of finding superintegrable systems among the integrable ones (i.e. systems with 1 or 2 additional independent integrals).
引用
收藏
页数:31
相关论文
共 50 条
  • [41] Decay of the classical Loschmidt echo in integrable systems
    Benenti, G
    Casati, G
    Veble, G
    PHYSICAL REVIEW E, 2003, 68 (03):
  • [42] Soliton splitting in quenched classical integrable systems
    Gamayun, O.
    Semenyakin, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (33)
  • [43] Classical limit of non-integrable systems
    Castagnino, M
    BRAZILIAN JOURNAL OF PHYSICS, 2005, 35 (2B) : 375 - 379
  • [44] Quantum-classical correspondence in integrable systems
    Yiqiang Zhao
    Biao Wu
    Science China(Physics,Mechanics & Astronomy), 2019, (09) : 99 - 107
  • [45] Classical and Bohmian Trajectories in Integrable and Nonintegrable Systems
    Contopoulos, George
    Tzemos, Athanasios C.
    PARTICLES, 2024, 7 (04) : 1062 - 1077
  • [46] Correction to: Haantjes algebras of classical integrable systems
    Piergiulio Tempesta
    Giorgio Tondo
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 (1): : 91 - 91
  • [47] Quantum-classical correspondence in integrable systems
    Zhao, Yiqiang
    Wu, Biao
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2019, 62 (09)
  • [48] Classical lattice W algebras and integrable systems
    Hikami, K
    Inoue, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (19): : 6911 - 6924
  • [49] ON THE CLASSICAL LIMIT OF BERRY PHASE INTEGRABLE SYSTEMS
    ASCH, J
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 127 (03) : 637 - 651
  • [50] CLASSICAL AND QUANTUM INTEGRABLE SYSTEMS: THE COALGEBRA APPROACH
    Ballesteros, A.
    Musso, F.
    Ragnisco, O.
    REGULAR & CHAOTIC DYNAMICS, 2002, 7 (04): : 393 - 398