Cylindrical type integrable classical systems in a magnetic field

被引:11
|
作者
Fournier, F. [1 ]
Snobl, L. [2 ]
Winternitz, P. [3 ,4 ]
机构
[1] Univ Montreal, Dept Phys, Fac Arts & Sci, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
[2] Czech Tech Univ, Dept Phys, Fac Nucl Sci & Phys Engn, Brehova 7, Prague 11519 1, Czech Republic
[3] Univ Montreal, Ctr Rech Math, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
[4] Univ Montreal, Dept Math & Stat, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
integrability; superintegrability; classical mechanics; magnetic field; HAMILTONIAN-SYSTEMS; EXACT SOLVABILITY; SUPERINTEGRABLE SYSTEMS; QUADRATIC HAMILTONIANS; 3RD-ORDER INTEGRALS; QUANTUM; SYMMETRIES; LAME;
D O I
10.1088/1751-8121/ab64a6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present all second order classical integrable systems of the cylindrical type in a three dimensional Euclidean space E-3 with a nontrivial magnetic field. The Hamiltonian and integrals of motion have the form H = 1/2 ((p) over right arrow + (A) triple over dot((x) over right arrow))2 + W((x) over right arrow), X-1 = (p(phi)(A))(2) + s(1)(r)(r, phi, Z) p(r)(A) + S-1(phi)(r, phi, Z) p(phi)(A) + s(1)(Z)(r, phi, Z) p(Z)(A) + m(1)(r, phi, Z), X-2 = (p(Z)(A))(2) + s(2)(r)(r, phi, Z) p(r)(A) + S-2(phi)(r, phi, Z) p(phi)(A) + s(2)(Z)(r, phi, Z) p(Z)(A) + m(2)(r, phi, Z), Infinite families of such systems are found, in general depending on arbitrary functions or parameters. This leaves open the possibility of finding superintegrable systems among the integrable ones (i.e. systems with 1 or 2 additional independent integrals).
引用
收藏
页数:31
相关论文
共 50 条
  • [22] Haantjes algebras of classical integrable systems
    Piergiulio Tempesta
    Giorgio Tondo
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 : 57 - 90
  • [23] Haantjes algebras of classical integrable systems
    Tempesta, Piergiulio
    Tondo, Giorgio
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (01) : 57 - 90
  • [24] Nonlinear quantization of integrable classical systems
    Scotti, A
    Ushveridze, A
    JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (08) : 4073 - 4085
  • [25] Lenard Chains for Classical Integrable Systems
    F. Magri
    Theoretical and Mathematical Physics, 2003, 137 : 1716 - 1722
  • [26] Classical and quantum integrable systems with boundaries
    Chen, YX
    Luo, XD
    Wu, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (05): : 757 - 769
  • [27] New classes of quadratically integrable systems in magnetic fields: The generalized cylindrical and spherical cases
    Kubu, Ondrej
    Marchesiello, Antonella
    Snobl, Libor
    ANNALS OF PHYSICS, 2023, 451
  • [28] Superintegrability of separable systems with magnetic field: the cylindrical case
    Kubu, O.
    Marchesiello, A.
    Snobl, L.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (42)
  • [29] Equilibration properties of classical integrable field theories
    De Luca, Andrea
    Mussardo, Giuseppe
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
  • [30] Completely Integrable Systems Associated with Classical Root Systems
    Oshima, Toshio
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3