Cylindrical type integrable classical systems in a magnetic field

被引:11
|
作者
Fournier, F. [1 ]
Snobl, L. [2 ]
Winternitz, P. [3 ,4 ]
机构
[1] Univ Montreal, Dept Phys, Fac Arts & Sci, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
[2] Czech Tech Univ, Dept Phys, Fac Nucl Sci & Phys Engn, Brehova 7, Prague 11519 1, Czech Republic
[3] Univ Montreal, Ctr Rech Math, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
[4] Univ Montreal, Dept Math & Stat, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
integrability; superintegrability; classical mechanics; magnetic field; HAMILTONIAN-SYSTEMS; EXACT SOLVABILITY; SUPERINTEGRABLE SYSTEMS; QUADRATIC HAMILTONIANS; 3RD-ORDER INTEGRALS; QUANTUM; SYMMETRIES; LAME;
D O I
10.1088/1751-8121/ab64a6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present all second order classical integrable systems of the cylindrical type in a three dimensional Euclidean space E-3 with a nontrivial magnetic field. The Hamiltonian and integrals of motion have the form H = 1/2 ((p) over right arrow + (A) triple over dot((x) over right arrow))2 + W((x) over right arrow), X-1 = (p(phi)(A))(2) + s(1)(r)(r, phi, Z) p(r)(A) + S-1(phi)(r, phi, Z) p(phi)(A) + s(1)(Z)(r, phi, Z) p(Z)(A) + m(1)(r, phi, Z), X-2 = (p(Z)(A))(2) + s(2)(r)(r, phi, Z) p(r)(A) + S-2(phi)(r, phi, Z) p(phi)(A) + s(2)(Z)(r, phi, Z) p(Z)(A) + m(2)(r, phi, Z), Infinite families of such systems are found, in general depending on arbitrary functions or parameters. This leaves open the possibility of finding superintegrable systems among the integrable ones (i.e. systems with 1 or 2 additional independent integrals).
引用
收藏
页数:31
相关论文
共 50 条