Regression and classification using Gaussian process priors

被引:0
|
作者
Neal, RM [1 ]
机构
[1] Univ Toronto, Toronto, ON, Canada
来源
关键词
Gaussian processes; nonparametric models; Markov chain Monte Carlo;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Gaussian processes are a natural way of specifying prior distributions over functions of one or more input variables. When such a function defines the mean response in a regression model with Gaussian errors, inference can be done using matrix computations, which are feasible for datasets of up to about a thousand cases. The covariance function of the Gaussian process can be given a hierarchical prior, which allows the model to discover high-level properties of the data, such as which inputs are relevant to predicting the response. Inference for these covariance hyperparameters can be done using Markov chain sampling. Classification models can be defined using Gaussian processes for underlying latent values, which can also be sampled within the Markov chain. Gaussian processes are in my view the simplest and most obvious way of defining flexible Bayesian regression and classification models, but despite some past usage, they appear to have been rather neglected as a general-purpose technique. This may be partly due to a confusion between the properties of the function being modeled and the properties of the best predictor for this unknown function.
引用
收藏
页码:475 / 501
页数:27
相关论文
共 50 条
  • [1] Bayesian regression and classification using Gaussian process priors indexed by probability density functions
    Fradi, A.
    Feunteun, Y.
    Samir, C.
    Baklouti, M.
    Bachoc, F.
    Loubes, J-M
    [J]. INFORMATION SCIENCES, 2021, 548 : 56 - 68
  • [2] A variational Bayes approach to a semiparametric regression using Gaussian process priors
    Ong, Victor M. H.
    Mensah, David K.
    Nott, David J.
    Jo, Seongil
    Park, Beomjo
    Choi, Taeryon
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 4258 - 4296
  • [3] Bayesian Multitask Classification with Gaussian Process Priors
    Skolidis, Grigorios
    Sanguinetti, Guido
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (12): : 2011 - 2021
  • [4] NONPARAMETRIC RANDOM EFFECTS FUNCTIONAL REGRESSION MODEL USING GAUSSIAN PROCESS PRIORS
    Wang, Zhanfeng
    Ding, Hao
    Chen, Zimu
    Shi, Jian Qing
    [J]. STATISTICA SINICA, 2021, 31 (01) : 53 - 78
  • [5] Variational Bayesian multinomial probit regression with gaussian process priors
    Girolami, Mark
    Rogers, Simon
    [J]. NEURAL COMPUTATION, 2006, 18 (08) : 1790 - 1817
  • [6] Alternative posterior consistency results in nonparametric binary regression using Gaussian process priors
    Choi, Taeryon
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (09) : 2975 - 2983
  • [7] Gaussian process regression and classification using International Classification of Disease codes as covariates
    Srivastava, Sanvesh
    Xu, Zongyi
    Li, Yunyi
    Street, W. Nick
    Gilbertson-White, Stephanie
    [J]. STAT, 2023, 12 (01):
  • [8] Flexible Link Functions in Nonparametric Binary Regression with Gaussian Process Priors
    Li, Dan
    Wang, Xia
    Lin, Lizhen
    Dey, Dipak K.
    [J]. BIOMETRICS, 2016, 72 (03) : 707 - 719
  • [9] Power link functions in an ordinal regression model with Gaussian process priors
    Li, D.
    Wang, X.
    Dey, D. K.
    [J]. ENVIRONMETRICS, 2019, 30 (06)
  • [10] How priors of initial hyperparameters affect Gaussian process regression models
    Chen, Zexun
    Wang, Bo
    [J]. NEUROCOMPUTING, 2018, 275 : 1702 - 1710