Bayesian regression and classification using Gaussian process priors indexed by probability density functions

被引:10
|
作者
Fradi, A. [1 ,3 ]
Feunteun, Y. [1 ]
Samir, C. [1 ,2 ]
Baklouti, M. [1 ]
Bachoc, F. [2 ]
Loubes, J-M [2 ]
机构
[1] UCA, CNRS, LIMOS, Clermont Ferrand, France
[2] Inst Math Toulouse, Toulouse, France
[3] Fac Sci Monastir, Monastir, Tunisia
关键词
Information geometry; Learning on nonlinear manifolds; Bayesian regression and classification; Gaussian process prior; HMC sampling; FISHER INFORMATION; PARAMETERS; SPACE;
D O I
10.1016/j.ins.2020.09.027
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we introduce the notion of Gaussian processes indexed by probability density functions for extending the Matern family of covariance functions. We use some tools from information geometry to improve the efficiency and the computational aspects of the Bayesian learning model. We particularly show how a Bayesian inference with a Gaussian process prior (covariance parameters estimation and prediction) can be put into action on the space of probability density functions. Our framework has the capacity of classifiying and infering on data observations that lie on nonlinear subspaces. Extensive experiments on multiple synthetic, semi-synthetic and real data demonstrate the effectiveness and the efficiency of the proposed methods in comparison with current state-of-theart methods. (c) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:56 / 68
页数:13
相关论文
共 50 条
  • [1] Regression and classification using Gaussian process priors
    Neal, RM
    [J]. BAYESIAN STATISTICS 6, 1999, : 475 - 501
  • [2] Bayesian Multitask Classification with Gaussian Process Priors
    Skolidis, Grigorios
    Sanguinetti, Guido
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (12): : 2011 - 2021
  • [3] Variational Bayesian multinomial probit regression with gaussian process priors
    Girolami, Mark
    Rogers, Simon
    [J]. NEURAL COMPUTATION, 2006, 18 (08) : 1790 - 1817
  • [4] BAYESIAN ANALYSIS OF SHAPE-RESTRICTED FUNCTIONS USING GAUSSIAN PROCESS PRIORS
    Lenk, Peter J.
    Choi, Taeryon
    [J]. STATISTICA SINICA, 2017, 27 (01) : 43 - 69
  • [5] Flexible Link Functions in Nonparametric Binary Regression with Gaussian Process Priors
    Li, Dan
    Wang, Xia
    Lin, Lizhen
    Dey, Dipak K.
    [J]. BIOMETRICS, 2016, 72 (03) : 707 - 719
  • [6] Power link functions in an ordinal regression model with Gaussian process priors
    Li, D.
    Wang, X.
    Dey, D. K.
    [J]. ENVIRONMETRICS, 2019, 30 (06)
  • [7] Power load probability density forecasting using Gaussian process quantile regression
    Yang, Yandong
    Li, Shufang
    Li, Wenqi
    Qu, Meijun
    [J]. APPLIED ENERGY, 2018, 213 : 499 - 509
  • [8] Bayesian regression and classification using mixtures of Gaussian processes
    Shi, JQ
    Murray-Smith, R
    Titterington, DM
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2003, 17 (02) : 149 - 161
  • [9] Bayesian inference with rescaled Gaussian process priors
    van der Vaart, Aad
    van Zanten, Harry
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2007, 1 : 433 - 448
  • [10] Mapping the probability of ripened subsoils using Bayesian logistic regression with informative priors
    Steinbuch, Luc
    Brus, Dick J.
    Heuvelink, Gerard B. M.
    [J]. GEODERMA, 2018, 316 : 56 - 69