NONPARAMETRIC RANDOM EFFECTS FUNCTIONAL REGRESSION MODEL USING GAUSSIAN PROCESS PRIORS

被引:2
|
作者
Wang, Zhanfeng [1 ]
Ding, Hao [1 ]
Chen, Zimu [1 ]
Shi, Jian Qing [2 ]
机构
[1] Univ Sci & Technol China, Dept Stat & Finance, Sch Management, Hefei, Anhui, Peoples R China
[2] Newcastle Univ, Sch Math & Stat, Newcastle Upon Tyne, Tyne & Wear, England
关键词
Functional linear model; function-on-function regression model; Gaussian process priors; nonlinear random effects; ON-FUNCTION REGRESSION; LINEAR-REGRESSION;
D O I
10.5705/ss.202018.0296
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For functional regression models with functional responses, we propose a nonparametric random-effects model using Gaussian process priors. The proposed model captures the heterogeneity nonlinearly and the covariance structure nonparametrically, enabling longitudinal studies of functional data. The model also has a flexible form of mean structure. We develop a procedure to estimate the unknown parameters and calculate the random effects nonparametrically. The procedure uses a penalized least squares regression and a maximum a posterior estimate, yielding a more accurate prediction. The statistical theory is discussed, including information consistency. Simulation studies and two real-data examples show that the proposed method performs well.
引用
收藏
页码:53 / 78
页数:26
相关论文
共 50 条
  • [1] Using a Gaussian Process as a Nonparametric Regression Model
    Gattiker, J. R.
    Hamada, M. S.
    Higdon, D. M.
    Schonlau, M.
    Welch, W. J.
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2016, 32 (02) : 673 - 680
  • [2] Alternative posterior consistency results in nonparametric binary regression using Gaussian process priors
    Choi, Taeryon
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (09) : 2975 - 2983
  • [3] Flexible Link Functions in Nonparametric Binary Regression with Gaussian Process Priors
    Li, Dan
    Wang, Xia
    Lin, Lizhen
    Dey, Dipak K.
    [J]. BIOMETRICS, 2016, 72 (03) : 707 - 719
  • [4] Regression and classification using Gaussian process priors
    Neal, RM
    [J]. BAYESIAN STATISTICS 6, 1999, : 475 - 501
  • [5] Probabilistic Nonparametric Model: Gaussian Process Regression
    不详
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2023, 43 (05): : 162 - 163
  • [6] Gaussian process methods for nonparametric functional regression with mixed predictors
    Wang, Bo
    Xu, Aiping
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 131 : 80 - 90
  • [7] RANDOM EFFECTS MODELS WITH NONPARAMETRIC PRIORS
    BUTLER, SM
    LOUIS, TA
    [J]. STATISTICS IN MEDICINE, 1992, 11 (14-15) : 1981 - 2000
  • [8] Bayesian nonparametric quantile mixed-effects models via regularization using Gaussian process priors
    Tanabe, Yuta
    Araki, Yuko
    Kinoshita, Masahiro
    Okamura, Hisayoshi
    Iwata, Sachiko
    Iwata, Osuke
    [J]. JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2022, 5 (01) : 241 - 267
  • [9] Bayesian nonparametric quantile mixed-effects models via regularization using Gaussian process priors
    Yuta Tanabe
    Yuko Araki
    Masahiro Kinoshita
    Hisayoshi Okamura
    Sachiko Iwata
    Osuke Iwata
    [J]. Japanese Journal of Statistics and Data Science, 2022, 5 : 241 - 267
  • [10] Power link functions in an ordinal regression model with Gaussian process priors
    Li, D.
    Wang, X.
    Dey, D. K.
    [J]. ENVIRONMETRICS, 2019, 30 (06)