Meager composants of continua

被引:3
|
作者
Mouron, Christopher [1 ]
Ordonez, Norberto [2 ]
机构
[1] Rhodes Coll, Dept Math & Comp Sci, 2000 N Pkwy, Memphis, TN 38112 USA
[2] Univ Autonoma Estado Mexico, Fac Ciencias, Inst Literario 100, Toluca 50000, Estado De Mexic, Mexico
关键词
Meager composant; Indecomposable continuum; Non-Suslinean;
D O I
10.1016/j.topol.2016.07.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a metric continuum X and a point p of X, the meager composant of p in X is defined as the union of all nowhere dense subcontinua of X that contain p. In this paper we study some topological properties of meager composants. In particular, we show that if a continuum contains a meager composant that is not closed, then the continuum must be non-Suslinean. Also, if a hereditarily k-coherent continuum has a non-closed meager composant, then the continuum must contain an indecomposable subcontinuum. Furthermore, if the hypothesis of having a singular dense meager composant is added, then both hereditarily k-coherent continua and irreducible continua must be indecomposable. Additionally, we provide many interesting examples and open problems. (C) 2016 Published by Elsevier B.V.
引用
收藏
页码:292 / 310
页数:19
相关论文
共 50 条
  • [21] MEAGER REWARDS
    BURNHAM, R
    [J]. SKY AND TELESCOPE, 1984, 67 (05): : 396 - 396
  • [22] Meager Migration
    不详
    [J]. SCIENCE, 2014, 343 (6171) : 584 - 584
  • [23] COMPOSANTS SHOWS AN ANXIOUS MOOD
    不详
    [J]. ELECTRONICS, 1981, 54 (06): : 99 - 100
  • [24] The space of composants of an indecomposable continuum
    Solecki, S
    [J]. ADVANCES IN MATHEMATICS, 2002, 166 (02) : 149 - 192
  • [25] NON-MEAGER FREE SETS FOR MEAGER RELATIONS ON POLISH SPACES
    Banakh, Taras
    Zdomskyy, Lyubomyr
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (06) : 2719 - 2724
  • [26] On meager function spaces, network character and meager convergence in topological spaces
    Banakh, Taras
    Mykhaylyuk, Volodymyr
    Zdomskyy, Lyubomyr
    [J]. COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2011, 52 (02): : 273 - 281
  • [27] A characterization of the meager ideal
    Zakrzewski, Piotr
    [J]. COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2015, 56 (01): : 45 - 50
  • [28] LEAN, BUT NOT MEAGER CONSULTING
    WELTER, R
    [J]. SYSTEM FAMILIE-FORSCHUNG UND THERAPIE, 1995, 8 (02): : 86 - 94
  • [29] Meager Result Reply
    Haeuser, Winfried
    [J]. DEUTSCHES ARZTEBLATT INTERNATIONAL, 2009, 106 (44): : 729 - 730
  • [30] On Haar meager sets
    Darji, Udayan B.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (18) : 2396 - 2400