NON-MEAGER FREE SETS FOR MEAGER RELATIONS ON POLISH SPACES

被引:3
|
作者
Banakh, Taras [1 ,2 ]
Zdomskyy, Lyubomyr [3 ]
机构
[1] Ivan Franko Natl Univ Lviv, Dept Math, Lvov, Ukraine
[2] Jan Kochanowski Univ, Inst Matemat, Kielce, Poland
[3] Univ Vienna, Ctr Math Log, A-1090 Vienna, Austria
关键词
Meager relation; free set;
D O I
10.1090/S0002-9939-2015-12419-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for each meager relation E subset of X x X on a Polish space X there is a nowhere meager subspace F subset of X which is E-free in the sense that (x, y) is not an element of E for any distinct points x, y is an element of F.
引用
收藏
页码:2719 / 2724
页数:6
相关论文
共 50 条
  • [1] NON-MEAGER FREE SETS AND INDEPENDENT FAMILIES
    Medini, Andrea
    Repovs, Dusan
    Zdomskyy, Lyubomyr
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (09) : 4061 - 4073
  • [2] Preimages of totally non-meager spaces
    Bouziad, A
    [J]. FUNDAMENTA MATHEMATICAE, 1997, 153 (02) : 191 - 197
  • [3] PARAMETRIZATIONS OF COANALYTIC SETS WITH RELATIVELY NON-MEAGER SECTIONS
    MAULDIN, RD
    SRIVASTAVA, SM
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1981, 292 (16): : 743 - 745
  • [4] Non-separable Banach spaces with non-meager Hamel basis
    Banakh, Taras
    Dzamonja, Mirna
    Halbeisen, Lorenz
    [J]. STUDIA MATHEMATICA, 2008, 189 (01) : 27 - 34
  • [5] Seven characterizations of non-meager P-filters
    Kunen, Kenneth
    Medini, Andrea
    Zdomskyy, Lyubomyr
    [J]. FUNDAMENTA MATHEMATICAE, 2015, 231 (02) : 189 - 208
  • [6] NON-MEAGER P-FILTERS ARE COUNTABLE DENSE HOMOGENEOUS
    Hernandez-Gutierrez, Rodrigo
    Hrusak, Michael
    [J]. COLLOQUIUM MATHEMATICUM, 2013, 130 (02) : 281 - 289
  • [7] On Haar meager sets
    Darji, Udayan B.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (18) : 2396 - 2400
  • [8] Universally meager sets
    Zakrzewski, P
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (06) : 1793 - 1798
  • [9] On meager function spaces, network character and meager convergence in topological spaces
    Banakh, Taras
    Mykhaylyuk, Volodymyr
    Zdomskyy, Lyubomyr
    [J]. COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2011, 52 (02): : 273 - 281
  • [10] On perfectly meager sets
    Bartoszynski, T
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (04) : 1189 - 1195