Meager composants of continua

被引:3
|
作者
Mouron, Christopher [1 ]
Ordonez, Norberto [2 ]
机构
[1] Rhodes Coll, Dept Math & Comp Sci, 2000 N Pkwy, Memphis, TN 38112 USA
[2] Univ Autonoma Estado Mexico, Fac Ciencias, Inst Literario 100, Toluca 50000, Estado De Mexic, Mexico
关键词
Meager composant; Indecomposable continuum; Non-Suslinean;
D O I
10.1016/j.topol.2016.07.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a metric continuum X and a point p of X, the meager composant of p in X is defined as the union of all nowhere dense subcontinua of X that contain p. In this paper we study some topological properties of meager composants. In particular, we show that if a continuum contains a meager composant that is not closed, then the continuum must be non-Suslinean. Also, if a hereditarily k-coherent continuum has a non-closed meager composant, then the continuum must contain an indecomposable subcontinuum. Furthermore, if the hypothesis of having a singular dense meager composant is added, then both hereditarily k-coherent continua and irreducible continua must be indecomposable. Additionally, we provide many interesting examples and open problems. (C) 2016 Published by Elsevier B.V.
引用
收藏
页码:292 / 310
页数:19
相关论文
共 50 条