Homeomorphisms of composants of Knaster continua

被引:4
|
作者
Stimac, S [1 ]
机构
[1] Univ Zagreb, Fac Econ, Zagreb 10000, Croatia
关键词
Knaster continuum; composant; tent map;
D O I
10.4064/fm171-3-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Knaster continuum K-p is defined as the inverse limit of the pth degree tent map. On every composant of the Knaster continuum we introduce an order and we consider some special points of the composant. These are used to describe the structure of the composants. We then prove that, for any integer p greater than or equal to 2, all composants of K-p having no endpoints are homeomorphic. This generalizes Bandt's result which concerns the case p = 2.
引用
收藏
页码:267 / 278
页数:12
相关论文
共 50 条
  • [1] A NOTE ON ACCESSIBLE COMPOSANTS IN KNASTER CONTINUA
    DEBSKI, W
    TYMCHATYN, ED
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 1993, 19 (03): : 435 - 442
  • [2] THE TOPOLOGICAL-ENTROPY OF HOMEOMORPHISMS OF KNASTER CONTINUA
    BARGE, M
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 1987, 13 (04): : 465 - 485
  • [3] Homotopy and dynamics for homeomorphisms of solenoids and Knaster continua
    Kwapisz, J
    [J]. FUNDAMENTA MATHEMATICAE, 2001, 168 (03) : 251 - 278
  • [4] The lattice of Knaster continua
    Eberhart, C
    Fugate, JB
    Schumann, S
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2002, 126 (03) : 343 - 349
  • [5] TREE-LIKE CONTINUA WITH INVARIANT COMPOSANTS UNDER FIXED-POINT-FREE HOMEOMORPHISMS
    Hagopian, C. L.
    Marsh, M. M.
    Prajs, J. R.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (10) : 3655 - 3661
  • [6] Meager composants of continua
    Mouron, Christopher
    Ordonez, Norberto
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2016, 210 : 292 - 310
  • [7] On fixed points of Knaster continua
    Keesling, J
    Ssembatya, VA
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2005, 153 (2-3) : 318 - 326
  • [8] COMPOSANTS OF INDECOMPOSABLE PLANE CONTINUA
    KRASINKIEWICZ, J
    [J]. BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1972, 20 (11): : 935 - 940
  • [9] On indecomposability and composants of chaotic continua
    Kato, H
    [J]. FUNDAMENTA MATHEMATICAE, 1996, 150 (03) : 245 - 253
  • [10] Open maps between Knaster continua
    Eberhart, C
    Fugate, JB
    Schumann, S
    [J]. FUNDAMENTA MATHEMATICAE, 1999, 162 (02) : 119 - 148