Laplace HypoPINN: physics-informed neural network for hypocenter localization and its predictive uncertainty

被引:16
|
作者
Izzatullah, Muhammad [1 ]
Yildirim, Isa Eren [1 ]
Bin Waheed, Umair [2 ]
Alkhalifah, Tariq [1 ]
机构
[1] King Abdulllah Univ Sci & Technol KAUST, Thuwal, Saudi Arabia
[2] King Fahd Univ Petr & Minerals KFUPM, Dhahran, Saudi Arabia
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2022年 / 3卷 / 04期
关键词
physics-informed neural networks (PINN); uncertainty quantification; Laplace approximation; hypocenter localization; microseismic; inversion; deep learning; FRAMEWORK;
D O I
10.1088/2632-2153/ac94b3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Several techniques have been proposed over the years for automatic hypocenter localization. While those techniques have pros and cons that trade-off computational efficiency and the susceptibility of getting trapped in local minima, an alternate approach is needed that allows robust localization performance and holds the potential to make the elusive goal of real-time microseismic monitoring possible. Physics-informed neural networks (PINNs) have appeared on the scene as a flexible and versatile framework for solving partial differential equations (PDEs) along with the associated initial or boundary conditions. We develop HypoPINN-a PINN-based inversion framework for hypocenter localization and introduce an approximate Bayesian framework for estimating its predictive uncertainties. This work focuses on predicting the hypocenter locations using HypoPINN and investigates the propagation of uncertainties from the random realizations of HypoPINN's weights and biases using the Laplace approximation. We train HypoPINN to obtain the optimized weights for predicting hypocenter location. Next, we approximate the covariance matrix at the optimized HypoPINN's weights for posterior sampling with the Laplace approximation. The posterior samples represent various realizations of HypoPINN's weights. Finally, we predict the locations of the hypocenter associated with those weights' realizations to investigate the uncertainty propagation that comes from those realizations. We demonstrate the features of this methodology through several numerical examples, including using the Otway velocity model based on the Otway project in Australia.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Physics-informed convolutional neural network for microgrid economic dispatch
    Ge, Xiaoyu
    Khazaei, Javad
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2024, 40
  • [32] A Physics-Informed Neural Network Approach for Nearfield Acoustic Holography
    Olivieri, Marco
    Pezzoli, Mirco
    Antonacci, Fabio
    Sarti, Augusto
    SENSORS, 2021, 21 (23)
  • [33] Optimizing a Physics-Informed Neural Network to solve the Reynolds Equation
    Lopez, Z. Sanchez
    Cortes, G. Berenice Diaz
    REVISTA MEXICANA DE FISICA, 2025, 71 (02)
  • [34] Neuromorphic, physics-informed spiking neural network for molecular dynamics
    Pham, Vuong Van
    Muther, Temoor
    Kalantari Dahaghi, Amirmasoud
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (04):
  • [35] Physics-informed neural network classification framework for reliability analysis
    Shi, Yan
    Beer, Michael
    Expert Systems with Applications, 2024, 258
  • [36] Physics-Informed Neural Network for Parameter Identification in a Piezoelectric Harvester
    Bai, C. Y.
    Yeh, F. Y.
    Shu, Y. C.
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS XVIII, 2024, 12946
  • [37] Investigation on aortic hemodynamics based on physics-informed neural network
    Du, Meiyuan
    Zhang, Chi
    Xie, Sheng
    Pu, Fan
    Zhang, Da
    Li, Deyu
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (07) : 11545 - 11567
  • [38] A Physics-Informed Deep Neural Network for Harmonization of CT Images
    Zarei, Mojtaba
    Sotoudeh-Paima, Saman
    Mccabe, Cindy
    Abadi, Ehsan
    Samei, Ehsan
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2024, 71 (12) : 3494 - 3504
  • [39] Applications of Physics-Informed Neural Network for Optical Fiber Communications
    Wang, Danshi
    Jiang, Xiaotian
    Song, Yuchen
    Fu, Meixia
    Zhang, Zhiguo
    Chen, Xue
    Zhang, Min
    IEEE COMMUNICATIONS MAGAZINE, 2022, 60 (09) : 32 - 37
  • [40] Application of physics-informed neural network in the analysis of hydrodynamic lubrication
    Yang Zhao
    Liang Guo
    Patrick Pat Lam Wong
    Friction, 2023, 11 : 1253 - 1264