Laplace HypoPINN: physics-informed neural network for hypocenter localization and its predictive uncertainty

被引:16
|
作者
Izzatullah, Muhammad [1 ]
Yildirim, Isa Eren [1 ]
Bin Waheed, Umair [2 ]
Alkhalifah, Tariq [1 ]
机构
[1] King Abdulllah Univ Sci & Technol KAUST, Thuwal, Saudi Arabia
[2] King Fahd Univ Petr & Minerals KFUPM, Dhahran, Saudi Arabia
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2022年 / 3卷 / 04期
关键词
physics-informed neural networks (PINN); uncertainty quantification; Laplace approximation; hypocenter localization; microseismic; inversion; deep learning; FRAMEWORK;
D O I
10.1088/2632-2153/ac94b3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Several techniques have been proposed over the years for automatic hypocenter localization. While those techniques have pros and cons that trade-off computational efficiency and the susceptibility of getting trapped in local minima, an alternate approach is needed that allows robust localization performance and holds the potential to make the elusive goal of real-time microseismic monitoring possible. Physics-informed neural networks (PINNs) have appeared on the scene as a flexible and versatile framework for solving partial differential equations (PDEs) along with the associated initial or boundary conditions. We develop HypoPINN-a PINN-based inversion framework for hypocenter localization and introduce an approximate Bayesian framework for estimating its predictive uncertainties. This work focuses on predicting the hypocenter locations using HypoPINN and investigates the propagation of uncertainties from the random realizations of HypoPINN's weights and biases using the Laplace approximation. We train HypoPINN to obtain the optimized weights for predicting hypocenter location. Next, we approximate the covariance matrix at the optimized HypoPINN's weights for posterior sampling with the Laplace approximation. The posterior samples represent various realizations of HypoPINN's weights. Finally, we predict the locations of the hypocenter associated with those weights' realizations to investigate the uncertainty propagation that comes from those realizations. We demonstrate the features of this methodology through several numerical examples, including using the Otway velocity model based on the Otway project in Australia.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Physics-informed deep neural network for image denoising
    Xypakis, Emmanouil
    De Turris, Valeria
    Gala, Fabrizio
    Ruocco, Giancarlo
    Leonetti, Marco
    OPTICS EXPRESS, 2023, 31 (26) : 43838 - 43849
  • [22] Physics-informed neural network for polarimetric underwater imaging
    Hu, Haofeng
    Han, Yilin
    Li, Xiaobo
    Jiang, Liubing
    Che, Li
    Liu, Tiegen
    Zhai, Jingsheng
    OPTICS EXPRESS, 2022, 30 (13) : 22512 - 22522
  • [23] Physics-informed Neural Implicit Flow neural network for parametric PDEs
    Xiang, Zixue
    Peng, Wei
    Yao, Wen
    Liu, Xu
    Zhang, Xiaoya
    NEURAL NETWORKS, 2025, 185
  • [24] Wasserstein generative adversarial uncertainty quantification in physics-informed neural networks
    Gao, Yihang
    Ng, Michael K.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 463
  • [25] PHYSICS-INFORMED NEURAL NETWORK FOR INVERSE HEAT CONDUCTION PROBLEM
    Qian, Weijia
    Hui, Xin
    Wang, Bosen
    Zhang, Zongwei
    Lin, Yuzhen
    Yang, Siheng
    HEAT TRANSFER RESEARCH, 2023, 54 (04) : 65 - 76
  • [26] Physics-Informed Neural Network for Nonlinear Dynamics in Fiber Optics
    Jiang, Xiaotian
    Wang, Danshi
    Fan, Qirui
    Zhang, Min
    Lu, Chao
    Lau, Alan Pak Tao
    LASER & PHOTONICS REVIEWS, 2022, 16 (09)
  • [27] Predicting ocean pressure field with a physics-informed neural network
    Yoon, Seunghyun
    Park, Yongsung
    Gerstoft, Peter
    Seong, Woojae
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2024, 155 (03): : 2037 - 2049
  • [28] Probabilistic physics-informed neural network for seismic petrophysical inversion
    Li, Peng
    Liu, Mingliang
    Alfarraj, Motaz
    Tahmasebi, Pejman
    Grana, Dario
    GEOPHYSICS, 2024, 89 (02) : M17 - M32
  • [29] Acoustic scattering simulations via physics-informed neural network
    Nair, Siddharth
    Walsh, Timothy F.
    Pickrell, Gregory
    Semperlotti, Fabio
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2024, 2024, 12949
  • [30] A Physics-Informed Neural Network approach for compartmental epidemiological models
    Millevoi, Caterina
    Pasetto, Damiano
    Ferronato, Massimiliano
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (09)