INFORMATION CRITERION FOR NONPARAMETRIC MODEL-ASSISTED SURVEY ESTIMATORS

被引:0
|
作者
James, Addison [1 ]
Xue, Lan [1 ]
Lesser, Virginia [1 ]
机构
[1] Oregon State Univ, Dept Stat, Corvallis, OR 97331 USA
关键词
Finite population; Model-assisted; Nonparametric; Splines; Survey; Variable selection; VARIABLE SELECTION; REGRESSION;
D O I
10.1093/jssam/smy015
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Nonparametric model-assisted estimators have been proposed to improve estimates of finite population parameters. Flexible nonparametric models provide more reliable estimators when a parametric model is misspecified. In this article, we propose an information criterion to select appropriate auxiliary variables to use in an additive model-assisted method. We approximate the additive nonparametric components using polynomial splines and extend the Bayesian Information Criterion (BIC) for finite populations. By removing irrelevant auxiliary variables, our method reduces model complexity and decreases estimator variance. We establish that the proposed BIC is asymptotically consistent in selecting the important explanatory variables when the true model is additive without interactions, a result supported by our numerical study. Our proposed method is easier to implement and better justified theoretically than the existing method proposed in the literature.
引用
收藏
页码:398 / 421
页数:24
相关论文
共 50 条
  • [21] AN APPROXIMATE BAYESIAN APPROACH TO MODEL-ASSISTED SURVEY ESTIMATION WITH MANY AUXILIARY VARIABLES
    Sugasawa, Shonosuke
    Kim, Jae Kwang
    [J]. STATISTICA SINICA, 2022, 32 (01) : 477 - 498
  • [22] A Comparison of Model-Assisted Estimators to Infer Land Cover/Use Class Area Using Satellite Imagery
    Li, Yizhan
    Zhu, Xiufang
    Pan, Yaozhong
    Gu, Jianyu
    Zhao, Anzhou
    Liu, Xianfeng
    [J]. REMOTE SENSING, 2014, 6 (09) : 8904 - 8922
  • [23] Model-assisted estimation of biomass in a LiDAR sample survey in Hedmark County, Norway
    Gregoire, Timothy G.
    Stahl, Goran
    Naesset, Erik
    Gobakken, Terje
    Nelson, Ross
    Holm, Soren
    [J]. CANADIAN JOURNAL OF FOREST RESEARCH-REVUE CANADIENNE DE RECHERCHE FORESTIERE, 2011, 41 (01): : 83 - 95
  • [24] Unsupervised Wireless Network Model-Assisted Abnormal Warning Information in Government Management
    Sun, Yumeng
    [J]. JOURNAL OF SENSORS, 2021, 2021
  • [25] MODEL-ASSISTED HIBERNATION OF SODERBERG POTS
    TORKLEP, K
    KRISTIANSAND, S
    [J]. JOURNAL OF METALS, 1988, 40 (11): : 117 - 117
  • [26] A Comparison of Model-Assisted Estimators, With and Without Data-Driven Transformations of Auxiliary Variables, With Application to Forest Inventory
    Ekstrom, Magnus
    Nilsson, Mats
    [J]. FRONTIERS IN FORESTS AND GLOBAL CHANGE, 2021, 4
  • [27] Nonparametric Information Criterion for Change Point Problems
    Variyath, Asokan Mulayath
    Vasudevan, Chithran Vadaverkkot
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), 2016, : 1417 - 1421
  • [28] Model-Assisted Estimation in Inverse Sampling
    Sungsuwan, Sureeporn
    Suwattee, Prachoom
    [J]. CHIANG MAI JOURNAL OF SCIENCE, 2014, 41 (03): : 704 - 713
  • [29] Potential gains from using unit level cost information in a model-assisted framework
    Steel, David G.
    Clark, Robert Graham
    [J]. SURVEY METHODOLOGY, 2014, 40 (02) : 231 - 242
  • [30] Relative performance of methods based on model-assisted survey regression estimation: A simulation study
    Lundy, Erin R.
    Rao, J. N. K.
    [J]. SURVEY METHODOLOGY, 2022, 48 (01) : 49 - 71