Potential gains from using unit level cost information in a model-assisted framework

被引:0
|
作者
Steel, David G. [1 ]
Clark, Robert Graham [1 ]
机构
[1] Univ Wollongong, Natl Inst Appl Stat Res Australia, Wollongong, NSW 2522, Australia
关键词
Optimal allocation; Optimal design; Sample design; Sampling variance; Survey costs; IMPROVING REPRESENTATIVENESS; HOUSEHOLD SURVEYS; SURVEY RESPONSE; INDICATORS;
D O I
暂无
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
In developing the sample design for a survey we attempt to produce a good design for the funds available. Information on costs can be used to develop sample designs that minimise the sampling variance of an estimator of total for fixed cost. Improvements in survey management systems mean that it is now sometimes possible to estimate the cost of including each unit in the sample. This paper develops relatively simple approaches to determine whether the potential gains arising from using this unit level cost information are likely to be of practical use. It is shown that the key factor is the coefficient of variation of the costs relative to the coefficient of variation of the relative error on the estimated cost coefficients.
引用
收藏
页码:231 / 242
页数:12
相关论文
共 50 条
  • [1] Mapping underwater ship hulls using a model-assisted bundle adjustment framework
    Ozog, Paul
    Johnson-Roberson, Matthew
    Eustice, Ryan M.
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2017, 87 : 329 - 347
  • [2] INFORMATION CRITERION FOR NONPARAMETRIC MODEL-ASSISTED SURVEY ESTIMATORS
    James, Addison
    Xue, Lan
    Lesser, Virginia
    [J]. JOURNAL OF SURVEY STATISTICS AND METHODOLOGY, 2019, 7 (03) : 398 - 421
  • [3] A Model-Assisted Probability of Detection Framework for Optical Fiber Sensors
    Falcetelli, Francesco
    Yue, Nan
    Rossi, Leonardo
    Bolognini, Gabriele
    Bastianini, Filippo
    Zarouchas, Dimitrios
    Di Sante, Raffaella
    [J]. SENSORS, 2023, 23 (10)
  • [4] DEMAND-SHIFTING USING MODEL-ASSISTED CONTROL
    Kontes, Giorgos D.
    Giannakis, Giorgos I.
    Kosmatopoulos, Elias B.
    Rovas, Dimitrios V.
    [J]. PROCEEDINGS OF SEBUA-12 ICHMT INTERNATIONAL SYMPOSIUM ON SUSTAINABLE ENERGY IN BUILDINGS AND URBAN AREAS, 2012,
  • [5] A Systematic Approach to Analyze the Computational Cost of Robustness in Model-Assisted Robust Optimization
    Ullah, Sibghat
    Wang, Hao
    Menzel, Stefan
    Sendhoff, Bernhard
    Baeck, Thomas
    [J]. PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XVII, PPSN 2022, PT I, 2022, 13398 : 63 - 75
  • [6] APPLICATION OF MODEL-ASSISTED POD USING A TRANSFER FUNCTION APPROACH
    Harding, C. A.
    Hugo, G. R.
    Bowles, S. J.
    [J]. REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLS 28A AND 28B, 2009, 1096 : 1792 - 1799
  • [7] Model-assisted estimation for complex surveys using penalised splines
    Breidt, FJ
    Claeskens, G
    Opsomer, JD
    [J]. BIOMETRIKA, 2005, 92 (04) : 831 - 846
  • [8] Unsupervised Wireless Network Model-Assisted Abnormal Warning Information in Government Management
    Sun, Yumeng
    [J]. JOURNAL OF SENSORS, 2021, 2021
  • [9] Computational Framework for Dense Sensor Network Evaluation Based on Model-Assisted Probability of Detection
    Yan, Jin
    Laflamme, Simon
    Leifsson, Leifur
    [J]. MATERIALS EVALUATION, 2020, 78 (05) : 573 - 583
  • [10] On the model-assisted regression estimators using remotely sensed auxiliary data
    McRoberts, Ronald E.
    Naesset, Erik
    Heikkinen, Juha
    Chen, Qi
    Strimbu, Victor
    Esteban, Jessica
    Hou, Zhengyang
    Giannetti, Francesca
    Mohammadi, Jahangir
    Chirici, Gherardo
    [J]. REMOTE SENSING OF ENVIRONMENT, 2022, 281