INFORMATION CRITERION FOR NONPARAMETRIC MODEL-ASSISTED SURVEY ESTIMATORS

被引:0
|
作者
James, Addison [1 ]
Xue, Lan [1 ]
Lesser, Virginia [1 ]
机构
[1] Oregon State Univ, Dept Stat, Corvallis, OR 97331 USA
关键词
Finite population; Model-assisted; Nonparametric; Splines; Survey; Variable selection; VARIABLE SELECTION; REGRESSION;
D O I
10.1093/jssam/smy015
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Nonparametric model-assisted estimators have been proposed to improve estimates of finite population parameters. Flexible nonparametric models provide more reliable estimators when a parametric model is misspecified. In this article, we propose an information criterion to select appropriate auxiliary variables to use in an additive model-assisted method. We approximate the additive nonparametric components using polynomial splines and extend the Bayesian Information Criterion (BIC) for finite populations. By removing irrelevant auxiliary variables, our method reduces model complexity and decreases estimator variance. We establish that the proposed BIC is asymptotically consistent in selecting the important explanatory variables when the true model is additive without interactions, a result supported by our numerical study. Our proposed method is easier to implement and better justified theoretically than the existing method proposed in the literature.
引用
收藏
页码:398 / 421
页数:24
相关论文
共 50 条
  • [1] Nonparametric additive model-assisted estimation for survey data
    Wang, Li
    Wang, Suojin
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2011, 102 (07) : 1126 - 1140
  • [2] EFFICIENCY OF MODEL-ASSISTED REGRESSION ESTIMATORS IN SAMPLE SURVEYS
    Shao, Jun
    Wang, Sheng
    [J]. STATISTICA SINICA, 2014, 24 (01) : 395 - 414
  • [3] Model-assisted ranked survey sampling
    Bouza, C
    [J]. BIOMETRICAL JOURNAL, 2001, 43 (02) : 249 - 259
  • [4] Model-Assisted Regression Estimators for Longitudinal Data with Nonignorable Dropout
    Wang, Lei
    Qi, Cuicui
    Shao, Jun
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2019, 87 : S121 - S138
  • [5] Model-assisted higher-order calibration of estimators of variance
    Farrell, PJ
    Singh, S
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2005, 47 (03) : 375 - 383
  • [6] Model-assisted forest inventory with parametric, semiparametric, and nonparametric models
    Kangas, Annika
    Myllymaki, Mari
    Gobakken, Terje
    Naesset, Erik
    [J]. CANADIAN JOURNAL OF FOREST RESEARCH, 2016, 46 (06) : 855 - 868
  • [7] On the model-assisted regression estimators using remotely sensed auxiliary data
    McRoberts, Ronald E.
    Naesset, Erik
    Heikkinen, Juha
    Chen, Qi
    Strimbu, Victor
    Esteban, Jessica
    Hou, Zhengyang
    Giannetti, Francesca
    Mohammadi, Jahangir
    Chirici, Gherardo
    [J]. REMOTE SENSING OF ENVIRONMENT, 2022, 281
  • [8] Model-Assisted Survey Estimation with Modern Prediction Techniques
    Breidt, F. Jay
    Opsomer, Jean D.
    [J]. STATISTICAL SCIENCE, 2017, 32 (02) : 190 - 205
  • [9] Model-assisted estimators for time-to-event data from complex surveys
    Reist, Benjamin M.
    Valliant, Richard
    [J]. STATISTICS IN MEDICINE, 2020, 39 (29) : 4351 - 4371
  • [10] Model-assisted analysis of covariance estimators for stepped wedge cluster randomized experiments
    Chen, Xinyuan
    Li, Fan
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2024,