Spectral-Spatial Classification of Hyperspectral Imagery Based on Stacked Sparse Autoencoder and Random Forest

被引:56
|
作者
Zhao, Chunhui [1 ]
Wan, Xiaoqing [1 ]
Zhao, Genping [1 ]
Cui, Bing [1 ]
Liu, Wu [1 ]
Qi, Bin [1 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin 150001, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Classification; hyperspectral imagery; class separability; stacked sparse autoencoder (SSA); random forest (RF); RANDOM SUBSPACE ENSEMBLES; SCALE;
D O I
10.1080/22797254.2017.1274566
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
It is of great interest in exploiting spectral-spatial information for hyperspectral image (HSI) classification at different spatial resolutions. This paper proposes a new spectral-spatial deep learning-based classification paradigm. First, pixel-based scale transformation and class separability criteria are employed to measure appropriate spatial resolution HSI, and then we integrate the spectral and spatial information (i.e., both implicit and explicit features) together to construct a joint spectral-spatial feature set. Second, as a deep learning architecture, stacked sparse autoencoder provides strong learning performance and is expected to exploit even more abstract and high-level feature representations from both spectral and spatial domains. Specifically, random forest (RF) classifier is first introduced into stacked sparse autoencoder for HSI classification, based on the fact that it provides better tradeoff among generalization performance, prediction accuracy and operation speed compared to other traditional procedures. Experiments on two real HSIs demonstrate that the proposed framework generates competitive performance.
引用
收藏
页码:47 / 63
页数:17
相关论文
共 50 条
  • [21] A spectral-spatial kernel-based method for hyperspectral imagery classification
    Li, Li
    Ge, Hongwei
    Gao, Jianqiang
    [J]. ADVANCES IN SPACE RESEARCH, 2017, 59 (04) : 954 - 967
  • [22] Hyperspectral Imagery Classification based on Rotation Invariant Spectral-Spatial Feature
    Tao, Chao
    Jin, Jing
    Tang, Yuqi
    Zou, ZhengRong
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 422 - 424
  • [23] Spectral-Spatial Classification of Hyperspectral Imagery Based on Partitional Clustering Techniques
    Tarabalka, Yuliya
    Benediktsson, Jon Atli
    Chanussot, Jocelyn
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (08): : 2973 - 2987
  • [24] Unsupervised Spectral-Spatial Feature Extraction With Generalized Autoencoder for Hyperspectral Imagery
    Koda, Satoru
    Melgani, Farid
    Nishii, Ryuei
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (03) : 469 - 473
  • [25] SPECTRAL-SPATIAL ROTATION FOREST FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Xia, Junshi
    Bombrun, Lionel
    Berthoumieu, Yannick
    Germain, Christian
    Du, Peijun
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5126 - 5129
  • [26] Spectral-Spatial Rotation Forest for Hyperspectral Image Classification
    Xia, Junshi
    Bombrun, Lionel
    Berthoumieu, Yannick
    Germain, Christian
    Du, Peijun
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (10) : 4605 - 4613
  • [27] Semisupervised Spectral-Spatial Classification of Hyperspectral Imagery With Affinity Scoring
    Chen, Zhao
    Wang, Bin
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (08) : 1710 - 1714
  • [28] Hyperspectral Imagery Classification Based on Rotation-Invariant Spectral-Spatial Feature
    Tao, Chao
    Tang, Yuqi
    Fan, Chong
    Zou, Zhengron
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (05) : 980 - 984
  • [29] A spectral-spatial attention aggregation network for hyperspectral imagery classification
    Kuang, Wenlan
    Tu, Bing
    He, Wangquan
    Zhang, Guoyun
    Peng, Yishu
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (19) : 7551 - 7580
  • [30] Robust Multiscale Spectral-Spatial Regularized Sparse Unmixing for Hyperspectral Imagery
    Wang, Ke
    Zhong, Lei
    Zheng, Jiajun
    Zhang, Shaoquan
    Li, Fan
    Deng, Chengzhi
    Cao, Jingjing
    Su, Dingli
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 1269 - 1285