Model checking for parametric single-index quantile models

被引:1
|
作者
Yuan, Liangliang [1 ,2 ]
Liu, Wenhui [1 ,2 ]
Zi, Xuemin [3 ]
Wang, Zhaojun [1 ,2 ]
机构
[1] Nankai Univ, LPMC, Sch Stat & Data Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, KLMDASR, Tianjin 300071, Peoples R China
[3] Tianjin Univ Technol & Educ, Sch Sci, Tianjin, Peoples R China
来源
STAT | 2020年 / 9卷 / 01期
基金
中国国家自然科学基金;
关键词
kernel smoothing; model adaptation; model checking; parametric single-index models; quantile regression; sufficient dimension reduction; OF-FIT TEST; DIMENSION REDUCTION; REGRESSION-MODELS; INFERENCE; TESTS;
D O I
10.1002/sta4.304
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this work, we construct a lack-of-fit test for testing parametric single-index quantile regression models. We apply the kernel smoothing technique for the multivariate nonparametric estimation involved in this task. To avoid the "curse of dimensionality" in multivariate nonparametric estimation and to fully utilize the information contained in the model, we employ a sufficient dimension reduction technique to identify the corresponding dimensionally reduced subspace and then construct our test statistic in this subspace. At different quantile levels, the test statistics given in this paper can quickly detect local alternative hypotheses, which are different from the null hypothesis for small and moderate sample sizes. A new wild bootstrap method is applied to approximate the critical values of the quantile regression model test. The effectiveness of the method is verified by simulation experiments and a real data application.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Model checking for parametric single-index models with massive datasets
    Yang, Xin
    Yan, Qijing
    Wu, Mixia
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2023, 227 : 129 - 145
  • [2] Model checking for parametric single-index models: a dimension reduction model-adaptive approach
    Guo, Xu
    Wang, Tao
    Zhu, Lixing
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2016, 78 (05) : 1013 - 1035
  • [3] Powerful nonparametric checks for parametric single-index quantile models with missing responses
    Yuan, Liangliang
    Liu, Wenhui
    Zi, Xuemin
    Wang, Zhaojun
    [J]. STAT, 2022, 11 (01):
  • [4] Functional single-index quantile regression models
    Sang, Peijun
    Cao, Jiguo
    [J]. STATISTICS AND COMPUTING, 2020, 30 (04) : 771 - 781
  • [5] Bayesian quantile regression for single-index models
    Yuao Hu
    Robert B. Gramacy
    Heng Lian
    [J]. Statistics and Computing, 2013, 23 : 437 - 454
  • [6] Bayesian quantile regression for single-index models
    Hu, Yuao
    Gramacy, Robert B.
    Lian, Heng
    [J]. STATISTICS AND COMPUTING, 2013, 23 (04) : 437 - 454
  • [7] Functional single-index quantile regression models
    Peijun Sang
    Jiguo Cao
    [J]. Statistics and Computing, 2020, 30 : 771 - 781
  • [8] Quantile regression for the single-index coefficient model
    Zhao, Weihua
    Lian, Heng
    Liang, Hua
    [J]. BERNOULLI, 2017, 23 (03) : 1997 - 2027
  • [9] Weighted composite quantile regression for single-index models
    Jiang, Rong
    Qian, Wei-Min
    Zhou, Zhan-Gong
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 148 : 34 - 48
  • [10] Bayesian Tobit quantile regression with single-index models
    Zhao, Kaifeng
    Lian, Heng
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (06) : 1247 - 1263