Inverse uncertainty quantification of trace physical model parameters using BFBT benchmark data

被引:18
|
作者
Hu, Guojun [1 ]
Kozlowski, Tomasz [1 ]
机构
[1] Univ Illinois, Dept Nucl Plasma & Radiol Engn, Room 224 Talbot Lab,104 S Wright St, Urbana, IL 61801 USA
关键词
Inverse uncertainty quantification; BFBT; TRACE; MLE; MAP; MCMC;
D O I
10.1016/j.anucene.2016.05.021
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Forward quantification of simulation (code) response uncertainties requires knowledge of physical model parameter uncertainties. Nuclear thermal-hydraulics codes, such as RELAP5 and TRACE, do not provide any information on uncertainties of physical model parameters. A framework is developed to quantify uncertainties of physical model parameters using Maximum Likelihood Estimation (MLE), Bayesian Maximum A Priori (MAP), and Markov Chain Monte Carlo (MCMC) algorithms. The objective of the present work is to perform the sensitivity analysis of the physical model parameters in code TRACE and calculate their uncertainties using MLE, MAP, and MCMC algorithms. The OECD/NEA BWR Full-size fine-mesh Bundle Test (BFBT) data is used to quantify uncertainty of selected physical models of TRACE code. The BFBT is based on a multi-rod assembly with measured data available for single or two-phase pressure drop, axial and radial void fraction distributions, and critical power for a wide range of system conditions. In this work, the steady-state cross-sectional averaged void fraction distribution is used as the input data for inverse uncertainty quantification (IUQ) algorithms, and the selected physical model's probability distribution function (PDF) is the desired output quantity. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:197 / 203
页数:7
相关论文
共 50 条
  • [1] Gaussian Process-Based Inverse Uncertainty Quantification for TRACE Physical Model Parameters Using Steady-State PSBT Benchmark
    Wang, Chen
    Wu, Xu
    Kozlowski, Tomasz
    [J]. NUCLEAR SCIENCE AND ENGINEERING, 2019, 193 (1-2) : 100 - 114
  • [2] Inverse uncertainty quantification of TRACE physical model parameters using sparse gird stochastic collocation surrogate model
    Wu, Xu
    Mui, Travis
    Hu, Guojun
    Meidani, Hadi
    Kozlowski, Tomasz
    [J]. NUCLEAR ENGINEERING AND DESIGN, 2017, 319 : 185 - 200
  • [3] Effect of mesh refinement on the estimation of model input parameters using Inverse Uncertainty Quantification
    Abu Saleem, Rabie A.
    Kozlowski, Tomasz
    [J]. ANNALS OF NUCLEAR ENERGY, 2019, 132 : 271 - 276
  • [4] Bayesian inverse uncertainty quantification of the physical model parameters for the spallation neutron source first target station
    Radaideh, Majdi, I
    Lin, Lianshan
    Jiang, Hao
    Cousineau, Sarah
    [J]. RESULTS IN PHYSICS, 2022, 36
  • [5] Uncertainty and Sensitivity Studies with TRACE-SUSA and TRACE-DAKOTA by Means of Transient BFBT Data
    Jaeger, Wadim
    Espinoza, Victor Hugo Sanchez
    Montero Mayorga, Francisco Javier
    Queral, Cesar
    [J]. SCIENCE AND TECHNOLOGY OF NUCLEAR INSTALLATIONS, 2013, 2013
  • [6] A comprehensive survey of inverse uncertainty quantification of physical model parameters in nuclear system thermal-hydraulics codes
    Wu, Xu
    Xie, Ziyu
    Alsafadi, Farah
    Kozlowski, Tomasz
    [J]. NUCLEAR ENGINEERING AND DESIGN, 2021, 384 (384)
  • [7] Uncertainty and Sensitivity Studies with TRACE-SUSA and TRACE-DAKOTA by Means of Steady State BFBT Data
    Jaeger, Wadim
    Espinoza, Victor Hugo Sanchez
    Montero Mayorga, Francisco Javier
    Queral, Cesar
    [J]. SCIENCE AND TECHNOLOGY OF NUCLEAR INSTALLATIONS, 2013, 2013
  • [8] Uncertainty quantification in Bayesian inverse problems with model and data dimension reduction
    Grana, Dario
    de Figueiredo, Leandro Passos
    Azevedo, Leonardo
    [J]. GEOPHYSICS, 2019, 84 (06) : M15 - M24
  • [9] Estimation of probability Density Functions for model input parameters using inverse uncertainty quantification with bias terms
    Abu Saleem, Rabie A.
    Kozlowski, Tomasz
    [J]. ANNALS OF NUCLEAR ENERGY, 2019, 133 : 1 - 8
  • [10] INVERSE UNCERTAINTY QUANTIFICATION OF A CELL MODEL USING A GAUSSIAN PROCESS METAMODEL
    de Vries, Kevin
    Nikishova, Anna
    Czaja, Benjamin
    Zavodszky, Gabor
    Hoekstra, Alfons G.
    [J]. INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2020, 10 (04) : 333 - 349