Inverse uncertainty quantification of trace physical model parameters using BFBT benchmark data

被引:18
|
作者
Hu, Guojun [1 ]
Kozlowski, Tomasz [1 ]
机构
[1] Univ Illinois, Dept Nucl Plasma & Radiol Engn, Room 224 Talbot Lab,104 S Wright St, Urbana, IL 61801 USA
关键词
Inverse uncertainty quantification; BFBT; TRACE; MLE; MAP; MCMC;
D O I
10.1016/j.anucene.2016.05.021
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Forward quantification of simulation (code) response uncertainties requires knowledge of physical model parameter uncertainties. Nuclear thermal-hydraulics codes, such as RELAP5 and TRACE, do not provide any information on uncertainties of physical model parameters. A framework is developed to quantify uncertainties of physical model parameters using Maximum Likelihood Estimation (MLE), Bayesian Maximum A Priori (MAP), and Markov Chain Monte Carlo (MCMC) algorithms. The objective of the present work is to perform the sensitivity analysis of the physical model parameters in code TRACE and calculate their uncertainties using MLE, MAP, and MCMC algorithms. The OECD/NEA BWR Full-size fine-mesh Bundle Test (BFBT) data is used to quantify uncertainty of selected physical models of TRACE code. The BFBT is based on a multi-rod assembly with measured data available for single or two-phase pressure drop, axial and radial void fraction distributions, and critical power for a wide range of system conditions. In this work, the steady-state cross-sectional averaged void fraction distribution is used as the input data for inverse uncertainty quantification (IUQ) algorithms, and the selected physical model's probability distribution function (PDF) is the desired output quantity. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:197 / 203
页数:7
相关论文
共 50 条
  • [31] Inverse uncertainty quantification of a mechanical model of arterial tissue with surrogate modelling
    Kakhaia, Salome
    Zun, Pavel
    Ye, Dongwei
    Krzhizhanovskaya, Valeria
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 238
  • [32] AN INVERSE MODEL WITH UNCERTAINTY QUANTIFICATION TO ESTIMATE THE ENERGY PERFORMANCE OF AN OFFICE BUILDING
    Zhang, Yuna
    O'Neill, Zheng
    Wagner, Timothy
    Augenbroe, Godfried
    [J]. BUILDING SIMULATION 2013: 13TH INTERNATIONAL CONFERENCE OF THE INTERNATIONAL BUILDING PERFORMANCE SIMULATION ASSOCIATION, 2013, : 614 - 621
  • [33] Model Uncertainty and Bayesian Model Averaged Benchmark Dose Estimation for Continuous Data
    Shao, Kan
    Gift, Jeffrey S.
    [J]. RISK ANALYSIS, 2014, 34 (01) : 101 - 120
  • [34] Statistical approach for uncertainty quantification of experimental modal model parameters
    Luczak, M.
    Peeters, B.
    Kahsin, M.
    Branner, K.
    [J]. PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2014) AND INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2014), 2014, : 4729 - 4739
  • [35] Uncertainty quantification of parameters in SST turbulence model for inlet simulation
    Zhang, Kailing
    Li, Siyi
    Duan, Yi
    Yan, Chao
    [J]. Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2023, 44
  • [36] Uncertainty quantification for chromatography model parameters by Bayesian inference using sequential Monte Carlo method
    Yamamoto, Yota
    Yajima, Tomoyuki
    Kawajiri, Yoshiaki
    [J]. CHEMICAL ENGINEERING RESEARCH & DESIGN, 2021, 175 : 223 - 237
  • [37] Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario
    Koeppel, Markus
    Franzelin, Fabian
    Kroeker, Ilja
    Oladyshkin, Sergey
    Santin, Gabriele
    Wittwar, Dominik
    Barth, Andrea
    Haasdonk, Bernard
    Nowak, Wolfgang
    Pflueger, Dirk
    Rohde, Christian
    [J]. COMPUTATIONAL GEOSCIENCES, 2019, 23 (02) : 339 - 354
  • [38] Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario
    Markus Köppel
    Fabian Franzelin
    Ilja Kröker
    Sergey Oladyshkin
    Gabriele Santin
    Dominik Wittwar
    Andrea Barth
    Bernard Haasdonk
    Wolfgang Nowak
    Dirk Pflüger
    Christian Rohde
    [J]. Computational Geosciences, 2019, 23 : 339 - 354
  • [39] Nuclear data uncertainty and sensitivity analysis of the VHTRC benchmark using SCALE
    Bostelmann, Friederike
    Strydom, Gerhard
    [J]. ANNALS OF NUCLEAR ENERGY, 2017, 110 : 317 - 329
  • [40] Estimation of parameter uncertainty using inverse model sensitivities
    Vesselinov, VV
    [J]. COMPUTATIONAL METHODS IN WATER RESOURCES, VOLS 1 AND 2, 2004, 55 : 1243 - 1250