Fuzzy inference systems for mineral prospectivity modeling-optimized using Monte Carlo simulations

被引:6
|
作者
Chudasama, Bijal [1 ]
机构
[1] Geol Survey Finland, Informat Solut Unit, Espoo, Finland
基金
欧盟地平线“2020”;
关键词
Fuzzy Inference Systems; Knowledge-driven modeling; Model uncertainties; Parameter optimization; Monte Carlo Simulations; Fuzzy membership functions; Confidence levels; Mineral Exploration; Target Prioritization;
D O I
10.1016/j.mex.2022.101629
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper uses Monte Carlo simulations to estimate the parameters of rule-based fuzzy inference systems (FISs) designed for mineral prospectivity modeling. The targeted process for the case study is gold mineralization in the Rajapalot project area in northern Finland. Mamdani-type FISs are developed and implemented for the predictive modeling of favorable structural settings and favorable chemical traps causing gold enrichment in host rocks from ore-bearing hydrothermal fluids. The parameters of the fuzzification functions control the output fuzzy membership values. Traditionally these parameters are chosen subjectively based on the expert's domain knowledge. This study uses drill core data statistics to define the distribution of the parameters. Subsequently, Monte Carlo simulations are used to simulate the corresponding fuzzy membership values and optimize the FISs. Capturing the complexities of the multi-processes geodynamic systems and the possible interplay mineralization-related geological aspects using 'If-Then' rule-based fuzzy inference systems. Implementation of Monte Carlo simulations for quantification of uncertainties related to a Mamdani-type FIS-based prospectivity modeling. Reporting prospectivity modeling results at different confidence levels for informed decision making on selection of exploration targets. (C) 2022 The Author. Published by Elsevier B.V.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Probabilistic Fuzzy Logic Modeling: Quantifying Uncertainty of Mineral Prospectivity Models Using Monte Carlo Simulations
    Vladimir A. Lisitsin
    Alok Porwal
    T. Campbell McCuaig
    [J]. Mathematical Geosciences, 2014, 46 : 747 - 769
  • [2] Probabilistic Fuzzy Logic Modeling: Quantifying Uncertainty of Mineral Prospectivity Models Using Monte Carlo Simulations
    Lisitsin, Vladimir A.
    Porwal, Alok
    McCuaig, T. Campbell
    [J]. MATHEMATICAL GEOSCIENCES, 2014, 46 (06) : 747 - 769
  • [3] Fuzzy inference systems for prospectivity modeling of mineral systems and a case-study for prospectivity mapping of surficial Uranium in Yeelirrie Area, Western Australia
    Porwal, Alok
    Das, Rahul Deb
    Chaudhary, Babita
    Gonzalez-Alvarez, Ignacio
    Kreuzer, Oliver
    [J]. ORE GEOLOGY REVIEWS, 2015, 71 : 839 - 852
  • [4] Modeling neutron guides using Monte Carlo simulations
    Wang, DQ
    Robertson, JL
    Crow, ML
    Wang, XL
    Lee, WT
    Hubbard, CR
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2002, 479 (2-3): : 461 - 466
  • [5] Using SAS for statistical modeling: MONTE CARLO simulations
    Mulvenon, SW
    Betz, MA
    [J]. PROCEEDINGS OF THE TWENTY-THIRD ANNUAL SAS USERS GROUP INTERNATIONAL CONFERENCE, 1998, : 1012 - 1017
  • [6] Optimized Monte Carlo simulations for system reliability analysis
    Campioni, L
    Scardovelli, R
    Vestrucci, P
    [J]. PROBABILISTIC SAFETY ASSESSMENT AND MANAGEMENT, VOL 1- 6, 2004, : 164 - 169
  • [7] From polypeptide sequences to structures using Monte Carlo simulations and an optimized potential
    Derreumaux, P
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (05): : 2301 - 2310
  • [8] OPTIMIZED DESIGN OF A PGNAA SYSTEM FOR CEMENT ANALYSIS USING MONTE CARLO SIMULATIONS
    Yang, J. B.
    Tuo, X. G.
    Li, Z.
    Cheng, Y.
    Wang, L.
    Wang, H. H.
    Cai, B.
    Liu, M. Z.
    [J]. NUCLEAR TECHNOLOGY, 2013, 184 (02) : 233 - 238
  • [9] Mineral prospectivity mapping based on wavelet neural network and Monte Carlo simulations in the Nanling W-Sn metallogenic province
    Chen, Guoxiong
    Huang, Ning
    Wu, Guopeng
    Luo, Lei
    Wang, Detao
    Cheng, Qiuming
    [J]. ORE GEOLOGY REVIEWS, 2022, 143
  • [10] Probabilistic modeling of seismically triggered landslides using Monte Carlo simulations
    Wang, Hua-Bin
    Sassa, Kyoji
    [J]. Yantu Lixue/Rock and Soil Mechanics, 2007, 28 (12): : 2565 - 2569