Fuzzy inference systems for mineral prospectivity modeling-optimized using Monte Carlo simulations

被引:6
|
作者
Chudasama, Bijal [1 ]
机构
[1] Geol Survey Finland, Informat Solut Unit, Espoo, Finland
基金
欧盟地平线“2020”;
关键词
Fuzzy Inference Systems; Knowledge-driven modeling; Model uncertainties; Parameter optimization; Monte Carlo Simulations; Fuzzy membership functions; Confidence levels; Mineral Exploration; Target Prioritization;
D O I
10.1016/j.mex.2022.101629
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper uses Monte Carlo simulations to estimate the parameters of rule-based fuzzy inference systems (FISs) designed for mineral prospectivity modeling. The targeted process for the case study is gold mineralization in the Rajapalot project area in northern Finland. Mamdani-type FISs are developed and implemented for the predictive modeling of favorable structural settings and favorable chemical traps causing gold enrichment in host rocks from ore-bearing hydrothermal fluids. The parameters of the fuzzification functions control the output fuzzy membership values. Traditionally these parameters are chosen subjectively based on the expert's domain knowledge. This study uses drill core data statistics to define the distribution of the parameters. Subsequently, Monte Carlo simulations are used to simulate the corresponding fuzzy membership values and optimize the FISs. Capturing the complexities of the multi-processes geodynamic systems and the possible interplay mineralization-related geological aspects using 'If-Then' rule-based fuzzy inference systems. Implementation of Monte Carlo simulations for quantification of uncertainties related to a Mamdani-type FIS-based prospectivity modeling. Reporting prospectivity modeling results at different confidence levels for informed decision making on selection of exploration targets. (C) 2022 The Author. Published by Elsevier B.V.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Toward faster inference of micron-scale axon diameters using Monte Carlo simulations
    Morgan Mercredi
    Melanie Martin
    [J]. Magnetic Resonance Materials in Physics, Biology and Medicine, 2018, 31 : 511 - 530
  • [32] Accurate Estimation of Circuit Delay Variance with Limited Monte Carlo Simulations Using Bayesian Inference
    Chithira, P. R.
    [J]. 2023 24TH INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN, ISQED, 2023, : 195 - 200
  • [33] Acceleration of Proton Monte Carlo Simulations Using the Macro Monte Carlo Method
    Jacqmin, D.
    [J]. MEDICAL PHYSICS, 2012, 39 (06) : 3945 - 3945
  • [34] Modeling and Monte Carlo simulations in oral drug absorption
    Dokoumetzidis, A
    Kosmidis, K
    Argyrakis, P
    Macheras, P
    [J]. BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2005, 96 (03) : 200 - 205
  • [35] Diffusivity interfaces in lattice Monte Carlo simulations: Modeling inhomogeneous delivery and release systems
    Ignacio, M.
    Bagheri, M.
    V. Chubynsk, M.
    de Haan, H. W.
    Slater, G. W.
    [J]. PHYSICAL REVIEW E, 2022, 105 (06)
  • [36] Inverse Modeling of Hydrologic Systems with Adaptive Multifidelity Markov Chain Monte Carlo Simulations
    Zhang, Jiangjiang
    Man, Jun
    Lin, Guang
    Wu, Laosheng
    Zeng, Lingzao
    [J]. WATER RESOURCES RESEARCH, 2018, 54 (07) : 4867 - 4886
  • [37] Optimized design of a facility for measuring sodium-24 in blood by using Monte Carlo simulations
    Jian-Bo Yang
    Rui Li
    Zhi Liu
    Hong Huang
    [J]. Journal of the Korean Physical Society, 2016, 68 : 939 - 943
  • [38] Optimized Design of a Facility for Measuring Sodium-24 in Blood by Using Monte Carlo Simulations
    Yang, Jian-Bo
    Li, Rui
    Liu, Zhi
    Huang, Hong
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2016, 68 (08) : L939 - L943
  • [39] Efficient modeling of magnetostrictive media using fuzzy inference systems
    Adly, A. A.
    Abd-El-Hafiz, S. K.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (09) : 2219 - 2226
  • [40] Efficient modeling of vector hysteresis using fuzzy inference systems
    Adly, A. A.
    Abd-El-Hafiz, S. K.
    [J]. PHYSICA B-CONDENSED MATTER, 2008, 403 (19-20) : 3812 - 3818